BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29687380)

  • 1. Methylcellulose Based Thermally Reversible Hydrogels.
    Forghani A; Devireddy R
    Methods Mol Biol; 2018; 1773():41-51. PubMed ID: 29687380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications.
    Thirumala S; Gimble JM; Devireddy RV
    Cells; 2013 Jun; 2(3):460-75. PubMed ID: 24709793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel.
    Yang MJ; Chen CH; Lin PJ; Huang CH; Chen W; Sung HW
    Biomacromolecules; 2007 Sep; 8(9):2746-52. PubMed ID: 17676800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.
    Payne C; Dolan EB; O'Sullivan J; Cryan SA; Kelly HM
    Drug Deliv Transl Res; 2017 Feb; 7(1):132-146. PubMed ID: 27924469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N-isopropylacrylamide).
    Akiyama Y; Kikuchi A; Yamato M; Okano T
    Acta Biomater; 2014 Aug; 10(8):3398-408. PubMed ID: 24681372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of cell sheets using methylcellulose and PNIPAAm thermoresponsive polymers: A comparison Study.
    Forghani A; Kriegh L; Hogan K; Chen C; Brewer G; Tighe TB; Devireddy R; Hayes D
    J Biomed Mater Res A; 2017 May; 105(5):1346-1354. PubMed ID: 28130868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications.
    Sá-Lima H; Tuzlakoglu K; Mano JF; Reis RL
    J Biomed Mater Res A; 2011 Sep; 98(4):596-603. PubMed ID: 21721116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of thermoresponsive polystyrene nanofibrous mats for cultured cell recovery.
    Oh HH; Ko YG; Uyama H; Park WH; Cho D; Kwon OH
    Biomed Res Int; 2014; 2014():480694. PubMed ID: 24696851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering.
    Choi A; Seo KD; Yoon H; Han SJ; Kim DS
    Biomater Sci; 2019 May; 7(6):2277-2287. PubMed ID: 31041933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude.
    Shimizu T; Yamato M; Kikuchi A; Okano T
    Tissue Eng; 2001 Apr; 7(2):141-51. PubMed ID: 11304450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genipin-cross-linked thermosensitive silk sericin/poly(N-isopropylacrylamide) hydrogels for cell proliferation and rapid detachment.
    Zhang Q; Dong P; Chen L; Wang X; Lu S
    J Biomed Mater Res A; 2014 Jan; 102(1):76-83. PubMed ID: 23606462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet.
    Tang Z; Akiyama Y; Yamato M; Okano T
    Biomaterials; 2010 Oct; 31(29):7435-43. PubMed ID: 20647153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intelligent thermoresponsive substrate from modified overhead projection sheet as a tool for construction and support of cell sheets in vitro.
    Nithya J; Kumar PR; Tilak P; Leena J; Sreenivasan K; Kumary TV
    Tissue Eng Part C Methods; 2011 Feb; 17(2):181-91. PubMed ID: 20722463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds.
    Kim EJ; Choi JS; Kim JS; Choi YC; Cho YW
    Biomacromolecules; 2016 Jan; 17(1):4-11. PubMed ID: 26607961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the hydrophobic basal layer of thermoresponsive block co-polymer brushes on thermally-induced cell sheet harvest.
    Matsuzaka N; Takahashi H; Nakayama M; Kikuchi A; Okano T
    J Biomater Sci Polym Ed; 2012; 23(10):1301-14. PubMed ID: 21722425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting.
    Kim YS; Lim JY; Donahue HJ; Lowe TL
    Tissue Eng; 2005; 11(1-2):30-40. PubMed ID: 15738659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.