These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29687654)

  • 1. The origins of cortical multisensory dynamics: Evidence from human infants.
    Werchan DM; Baumgartner HA; Lewkowicz DJ; Amso D
    Dev Cogn Neurosci; 2018 Nov; 34():75-81. PubMed ID: 30099263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement.
    Emberson LL; Cannon G; Palmeri H; Richards JE; Aslin RN
    Dev Cogn Neurosci; 2017 Feb; 23():26-38. PubMed ID: 28012401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional activation of the infant cortex during object processing.
    Wilcox T; Stubbs J; Hirshkowitz A; Boas DA
    Neuroimage; 2012 Sep; 62(3):1833-40. PubMed ID: 22634218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of neural speech discrimination in preterm infants at term-equivalent age.
    Bartha-Doering L; Alexopoulos J; Giordano V; Stelzer L; Kainz T; Benavides-Varela S; Wartenburger I; Klebermass-Schrehof K; Olischar M; Seidl R; Berger A
    Dev Cogn Neurosci; 2019 Oct; 39():100679. PubMed ID: 31437736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mind over motor mapping: Driver response to changing vehicle dynamics.
    Bruno JL; Baker JM; Gundran A; Harbott LK; Stuart Z; Piccirilli AM; Hosseini SMH; Gerdes JC; Reiss AL
    Hum Brain Mapp; 2018 Oct; 39(10):3915-3927. PubMed ID: 29885097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-down knowledge rapidly acquired through abstract rule learning biases subsequent visual attention in 9-month-old infants.
    Werchan DM; Amso D
    Dev Cogn Neurosci; 2020 Apr; 42():100761. PubMed ID: 32072934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trajectories of Infants' Biobehavioral Development: Timing and Rate of A-Not-B Performance Gains and EEG Maturation.
    MacNeill LA; Ram N; Bell MA; Fox NA; Pérez-Edgar K
    Child Dev; 2018 May; 89(3):711-724. PubMed ID: 29341120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction in infants and adults: A pupillometry study.
    Zhang F; Jaffe-Dax S; Wilson RC; Emberson LL
    Dev Sci; 2019 Jul; 22(4):e12780. PubMed ID: 30506618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of homology as a basis for evaluating developmental mechanisms: exploring selective attention across the life-span.
    Lickliter R; Bahrick LE
    Dev Psychobiol; 2013 Jan; 55(1):76-83. PubMed ID: 22711341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of top-down cortical propagations in youth.
    Pines A; Keller AS; Larsen B; Bertolero M; Ashourvan A; Bassett DS; Cieslak M; Covitz S; Fan Y; Feczko E; Houghton A; Rueter AR; Saggar M; Shafiei G; Tapera TM; Vogel J; Weinstein SM; Shinohara RT; Williams LM; Fair DA; Satterthwaite TD
    Neuron; 2023 Apr; 111(8):1316-1330.e5. PubMed ID: 36803653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Developing Infant Creates a Curriculum for Statistical Learning.
    Smith LB; Jayaraman S; Clerkin E; Yu C
    Trends Cogn Sci; 2018 Apr; 22(4):325-336. PubMed ID: 29519675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Violations of Core Knowledge Shape Early Learning.
    Stahl AE; Feigenson L
    Top Cogn Sci; 2019 Jan; 11(1):136-153. PubMed ID: 30369059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using functional near-infrared spectroscopy to study the early developing brain: future directions and new challenges.
    Gervain J; Minagawa Y; Emberson L; Lloyd-Fox S
    Neurophotonics; 2023 Apr; 10(2):023519. PubMed ID: 37020727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound omission related brain responses in children.
    Dercksen TT; Widmann A; Scharf F; Wetzel N
    Dev Cogn Neurosci; 2022 Feb; 53():101045. PubMed ID: 34923314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the Neonatal Behavioral Assessment Scale to Evaluate the Neurobehavior of Preterm Neonates.
    Malak R; Fechner B; Sikorska D; Rosołek M; Mojs E; Samborski W; Baum E
    Brain Sci; 2021 Sep; 11(10):. PubMed ID: 34679350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants.
    Boldin AM; Geiger R; Emberson LL
    Dev Psychobiol; 2018 Jul; 60(5):544-556. PubMed ID: 29687654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth.
    Emberson LL; Boldin AM; Riccio JE; Guillet R; Aslin RN
    Curr Biol; 2017 Feb; 27(3):431-436. PubMed ID: 28132814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational Role for Top-Down Modulation from Frontal Cortex in Infancy.
    Jaffe-Dax S; Boldin AM; Daw ND; Emberson LL
    J Cogn Neurosci; 2020 Mar; 32(3):508-514. PubMed ID: 31682568
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.