BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29687981)

  • 21. Enhanced cathode performance of a rGO-V
    Mahalingam S; Ayyaru S; Ahn YH
    Dalton Trans; 2018 Nov; 47(46):16777-16788. PubMed ID: 30427338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xerogel based catalyst for improved cathode performance in microbial fuel cells.
    Thapa BS; Seetharaman S; Chetty R; Chandra TS
    Enzyme Microb Technol; 2019 May; 124():1-8. PubMed ID: 30797474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Co
    Tuyen NH; Kim HG; Yoon YS
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33923445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diethylenetriamine directed the assembly of Co
    Wang G; Yue H; Xu Y; Liu G; Jin R; Gao S
    J Colloid Interface Sci; 2020 Jun; 570():332-339. PubMed ID: 32171927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning Metallic Co
    Liu Z; Han K; Li P; Wang W; He D; Tan Q; Wang L; Li Y; Qin M; Qu X
    Nanomicro Lett; 2019 Nov; 11(1):96. PubMed ID: 34138034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.
    Mink JE; Hussain MM
    ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.
    Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY
    Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effectiveness of phase- and morphology-controlled MnO
    Valipour A; Hamnabard N; Meshkati SMH; Pakan M; Ahn YH
    Dalton Trans; 2019 Apr; 48(16):5429-5443. PubMed ID: 30951077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction].
    Yang TT; Zhu NW; Lu Y; Wu PX
    Huan Jing Ke Xue; 2016 Jan; 37(1):350-8. PubMed ID: 27078977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells.
    Dong H; Yu H; Wang X; Zhou Q; Feng J
    Water Res; 2012 Nov; 46(17):5777-5787. PubMed ID: 22939222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogen-doped carbon nanotube nanopolyhedra as advanced electrocatalyst for high-performance of activated carbon air-cathode microbial fuel cell.
    Zhang S; Su W; Wang X; Li K; Li Y
    Biosens Bioelectron; 2019 Feb; 127():181-187. PubMed ID: 30605807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application.
    Roh SH
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4158-61. PubMed ID: 23862465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cornstalk-Derived Nitrogen-Doped Partly Graphitized Carbon as Efficient Metal-Free Catalyst for Oxygen Reduction Reaction in Microbial Fuel Cells.
    Sun Y; Duan Y; Hao L; Xing Z; Dai Y; Li R; Zou J
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25923-25932. PubMed ID: 27623352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.
    Zhang X; Xia X; Ivanov I; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(3):2075-81. PubMed ID: 24422458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode.
    Zhao H; Zhang Y; Zhao B; Chang Y; Li Z
    Environ Sci Technol; 2012 May; 46(9):5198-204. PubMed ID: 22475021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells.
    Chen L; Yin H; Zhou Y; Dai H; Yu T; Liu J; Zou Z
    Nanoscale; 2016 Jan; 8(4):2304-8. PubMed ID: 26752737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media.
    Kruusenberg I; Matisen L; Tammeveski K
    J Nanosci Nanotechnol; 2013 Jan; 13(1):621-7. PubMed ID: 23646786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.