These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29688007)

  • 1. Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons.
    Merino-Díez N; Lobo-Checa J; Nita P; Garcia-Lekue A; Basagni A; Vasseur G; Tiso F; Sedona F; Das PK; Fujii J; Vobornik I; Sambi M; Pascual JI; Ortega JE; de Oteyza DG
    J Phys Chem Lett; 2018 May; 9(10):2510-2517. PubMed ID: 29688007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors.
    Teeter JD; Costa PS; Zahl P; Vo TH; Shekhirev M; Xu W; Zeng XC; Enders A; Sinitskii A
    Nanoscale; 2017 Dec; 9(47):18835-18844. PubMed ID: 29177282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons.
    de Oteyza DG; García-Lekue A; Vilas-Varela M; Merino-Díez N; Carbonell-Sanromà E; Corso M; Vasseur G; Rogero C; Guitián E; Pascual JI; Ortega JE; Wakayama Y; Peña D
    ACS Nano; 2016 Sep; 10(9):9000-8. PubMed ID: 27548516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth Optimization and Device Integration of Narrow-Bandgap Graphene Nanoribbons.
    Borin Barin G; Sun Q; Di Giovannantonio M; Du CZ; Wang XY; Llinas JP; Mutlu Z; Lin Y; Wilhelm J; Overbeck J; Daniels C; Lamparski M; Sahabudeen H; Perrin ML; Urgel JI; Mishra S; Kinikar A; Widmer R; Stolz S; Bommert M; Pignedoli C; Feng X; Calame M; Müllen K; Narita A; Meunier V; Bokor J; Fasel R; Ruffieux P
    Small; 2022 Aug; 18(31):e2202301. PubMed ID: 35713270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Confined Hydrogenation of Graphene Nanoribbons.
    Sung YY; Vejayan H; Baddeley CJ; Richardson NV; Grillo F; Schaub R
    ACS Nano; 2022 Jul; 16(7):10281-10291. PubMed ID: 35786912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons.
    Wang XY; Urgel JI; Barin GB; Eimre K; Di Giovannantonio M; Milani A; Tommasini M; Pignedoli CA; Ruffieux P; Feng X; Fasel R; Müllen K; Narita A
    J Am Chem Soc; 2018 Jul; 140(29):9104-9107. PubMed ID: 29990420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons.
    Berdonces-Layunta A; Schulz F; Aguilar-Galindo F; Lawrence J; Mohammed MSG; Muntwiler M; Lobo-Checa J; Liljeroth P; de Oteyza DG
    ACS Nano; 2021 Oct; 15(10):16552-16561. PubMed ID: 34633170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure of spatially aligned graphene nanoribbons on Au(788).
    Linden S; Zhong D; Timmer A; Aghdassi N; Franke JH; Zhang H; Feng X; Müllen K; Fuchs H; Chi L; Zacharias H
    Phys Rev Lett; 2012 May; 108(21):216801. PubMed ID: 23003288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons.
    Pedramrazi Z; Chen C; Zhao F; Cao T; Nguyen GD; Omrani AA; Tsai HZ; Cloke RR; Marangoni T; Rizzo DJ; Joshi T; Bronner C; Choi WW; Fischer FR; Louie SG; Crommie MF
    Nano Lett; 2018 Jun; 18(6):3550-3556. PubMed ID: 29851493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpolymer Self-Assembly of Bottom-up Graphene Nanoribbons Fabricated from Fluorinated Precursors.
    Ohtomo M; Jippo H; Hayashi H; Yamaguchi J; Ohfuchi M; Yamada H; Sato S
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31623-31630. PubMed ID: 30148601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure.
    Keerthi A; Sánchez-Sánchez C; Deniz O; Ruffieux P; Schollmeyer D; Feng X; Narita A; Fasel R; Müllen K
    Chem Asian J; 2020 Nov; 15(22):3807-3811. PubMed ID: 32955160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure changes during the surface-assisted formation of a graphene nanoribbon.
    Bronner C; Utecht M; Haase A; Saalfrank P; Klamroth T; Tegeder P
    J Chem Phys; 2014 Jan; 140(2):024701. PubMed ID: 24437896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100).
    Radocea A; Sun T; Vo TH; Sinitskii A; Aluru NR; Lyding JW
    Nano Lett; 2017 Jan; 17(1):170-178. PubMed ID: 27936761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111).
    Merino-Díez N; Garcia-Lekue A; Carbonell-Sanromà E; Li J; Corso M; Colazzo L; Sedona F; Sánchez-Portal D; Pascual JI; de Oteyza DG
    ACS Nano; 2017 Nov; 11(11):11661-11668. PubMed ID: 29049879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons.
    Xu X; Sun K; Ishikawa A; Narita A; Kawai S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302534. PubMed ID: 36929312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-narrow metallic armchair graphene nanoribbons.
    Kimouche A; Ervasti MM; Drost R; Halonen S; Harju A; Joensuu PM; Sainio J; Liljeroth P
    Nat Commun; 2015 Dec; 6():10177. PubMed ID: 26658960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.