These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29688306)

  • 41. Discovery of tandem and interspersed segmental duplications using high-throughput sequencing.
    Soylev A; Le TM; Amini H; Alkan C; Hormozdiari F
    Bioinformatics; 2019 Oct; 35(20):3923-3930. PubMed ID: 30937433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions.
    Wan F; Hong L; Xiao A; Jiang T; Zeng J
    Bioinformatics; 2019 Jan; 35(1):104-111. PubMed ID: 30561548
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A network-based drug repurposing method via non-negative matrix factorization.
    Sadeghi S; Lu J; Ngom A
    Bioinformatics; 2022 Feb; 38(5):1369-1377. PubMed ID: 34875000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.
    Cheng F; Zhao J; Fooksa M; Zhao Z
    J Am Med Inform Assoc; 2016 Jul; 23(4):681-91. PubMed ID: 27026610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RANKS: a flexible tool for node label ranking and classification in biological networks.
    Valentini G; Armano G; Frasca M; Lin J; Mesiti M; Re M
    Bioinformatics; 2016 Sep; 32(18):2872-4. PubMed ID: 27256314
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.
    Yang F; Xu J; Zeng J
    Pac Symp Biocomput; 2014; ():148-59. PubMed ID: 24297542
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory.
    Huang CH; Chang PM; Hsu CW; Huang CY; Ng KL
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):2. PubMed ID: 26817825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Drug target prediction and repositioning using an integrated network-based approach.
    Emig D; Ivliev A; Pustovalova O; Lancashire L; Bureeva S; Nikolsky Y; Bessarabova M
    PLoS One; 2013; 8(4):e60618. PubMed ID: 23593264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks.
    Huang W; Li Z; Kang Y; Ye X; Feng W
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36359016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of drug indications based on chemical interactions and chemical similarities.
    Huang G; Lu Y; Lu C; Zheng M; Cai YD
    Biomed Res Int; 2015; 2015():584546. PubMed ID: 25821813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.
    Sawada R; Iwata H; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Dec; 55(12):2717-30. PubMed ID: 26580494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gaussian interaction profile kernels for predicting drug-target interaction.
    van Laarhoven T; Nabuurs SB; Marchiori E
    Bioinformatics; 2011 Nov; 27(21):3036-43. PubMed ID: 21893517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overlap matrix completion for predicting drug-associated indications.
    Yang M; Luo H; Li Y; Wu FX; Wang J
    PLoS Comput Biol; 2019 Dec; 15(12):e1007541. PubMed ID: 31869322
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A weighted bilinear neural collaborative filtering approach for drug repositioning.
    Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding.
    Chen H; Cheng F; Li J
    PLoS Comput Biol; 2020 Jul; 16(7):e1008040. PubMed ID: 32667925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting Drug-Disease Association Based on Ensemble Strategy.
    Wang J; Wang W; Yan C; Luo J; Zhang G
    Front Genet; 2021; 12():666575. PubMed ID: 34012464
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity.
    Wang K; Sun J; Zhou S; Wan C; Qin S; Li C; He L; Yang L
    PLoS Comput Biol; 2013; 9(11):e1003315. PubMed ID: 24244130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DrPOCS: Drug Repositioning Based on Projection Onto Convex Sets.
    Wang YY; Cui C; Qi L; Yan H; Zhao XM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):154-162. PubMed ID: 29993698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.