BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29688549)

  • 1. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs.
    Ghimire CP; Bruijnzeel LA; Lubczynski MW; Zwartendijk BW; Odongo VO; Ravelona M; van Meerveld HJI
    Tree Physiol; 2018 Jul; 38(7):1053-1070. PubMed ID: 29688549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Burgess SS; Oliveira RS
    Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.
    Marchin RM; Broadhead AA; Bostic LE; Dunn RR; Hoffmann WA
    Plant Cell Environ; 2016 Oct; 39(10):2221-34. PubMed ID: 27392307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water economy of Neotropical savanna trees: six paradigms revisited.
    Goldstein G; Meinzer FC; Bucci SJ; Scholz FG; Franco AC; Hoffmann WA
    Tree Physiol; 2008 Mar; 28(3):395-404. PubMed ID: 18171663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes.
    Motzer T; Munz N; Küppers M; Schmitt D; Anhuf D
    Tree Physiol; 2005 Oct; 25(10):1283-93. PubMed ID: 16076777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction.
    Yoshifuji N; Kumagai T; Ichie T; Kume T; Tateishi M; Inoue Y; Yoneyama A; Nakashizuka T
    J Plant Res; 2020 Mar; 133(2):175-191. PubMed ID: 31858360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees.
    Muñoz-Villers LE; Holwerda F; Alvarado-Barrientos MS; Geissert DR; Dawson TE
    Oecologia; 2018 Sep; 188(1):303-317. PubMed ID: 29943144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species.
    Eller F; Jensen K; Reisdorff C
    Tree Physiol; 2017 Apr; 37(4):428-440. PubMed ID: 27974652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tree water dynamics in a drying and warming world.
    Grossiord C; Sevanto S; Borrego I; Chan AM; Collins AD; Dickman LT; Hudson PJ; McBranch N; Michaletz ST; Pockman WT; Ryan M; Vilagrosa A; McDowell NG
    Plant Cell Environ; 2017 Sep; 40(9):1861-1873. PubMed ID: 28556263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting stomatal sensitivity to temperature and soil drought in mature alpine conifers.
    Peters RL; Speich M; Pappas C; Kahmen A; von Arx G; Graf Pannatier E; Steppe K; Treydte K; Stritih A; Fonti P
    Plant Cell Environ; 2019 May; 42(5):1674-1689. PubMed ID: 30536787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brief windows with more favorable atmospheric conditions explain patterns of Polylepis reticulata tree water use in a high-altitude Andean forest.
    Carabajo-Hidalgo A; Sabaté S; Crespo P; Asbjornsen H
    Tree Physiol; 2023 Dec; 43(12):2085-2097. PubMed ID: 37672256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nighttime transpiration in woody plants from contrasting ecosystems.
    Dawson TE; Burgess SS; Tu KP; Oliveira RS; Santiago LS; Fisher JB; Simonin KA; Ambrose AR
    Tree Physiol; 2007 Apr; 27(4):561-75. PubMed ID: 17241998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transpiration and cooling potential of tropical urban trees from different native habitats.
    Tan PY; Wong NH; Tan CL; Jusuf SK; Schmiele K; Chiam ZQ
    Sci Total Environ; 2020 Feb; 705():135764. PubMed ID: 31806315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of stomatal conductance to seasonal drought in tropical forests.
    Wu J; Serbin SP; Ely KS; Wolfe BT; Dickman LT; Grossiord C; Michaletz ST; Collins AD; Detto M; McDowell NG; Wright SJ; Rogers A
    Glob Chang Biol; 2020 Feb; 26(2):823-839. PubMed ID: 31482618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest.
    Meinzer FC; Woodruff DR; Eissenstat DM; Lin HS; Adams TS; McCulloh KA
    Tree Physiol; 2013 Apr; 33(4):345-56. PubMed ID: 23513033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-use advantage for lianas over trees in tropical seasonal forests.
    Chen YJ; Cao KF; Schnitzer SA; Fan ZX; Zhang JL; Bongers F
    New Phytol; 2015 Jan; 205(1):128-36. PubMed ID: 25264136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.