These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29688591)

  • 41. Towards quantifying atmospheric dispersion of pesticide spray drift in Yuma County Arizona.
    Yuan S; Arellano AF; Knickrehm L; Chang HI; Castro CL; Furlong M
    Atmos Environ (1994); 2024 Feb; 319():. PubMed ID: 38250567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.
    Wolters A; Linnemann V; van de Zande JC; Vereecken H
    Sci Total Environ; 2008 Nov; 405(1-3):269-77. PubMed ID: 18723207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard.
    Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X
    Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study.
    Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB
    Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Agrochemical spray drift; assessment and mitigation--a review.
    Felsot AS; Unsworth JB; Linders JB; Roberts G; Rautman D; Harris C; Carazo E
    J Environ Sci Health B; 2011; 46(1):1-23. PubMed ID: 20981606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison of two spray nozzle systems used to aerially apply the ultra-low-volume adulticide fenthion.
    Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA
    J Am Mosq Control Assoc; 2004 Mar; 20(1):27-35. PubMed ID: 15088702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimating ecotoxicological effects of pesticide drift on nontarget arthropods in field hedgerows.
    Otto S; Lazzaro L; Finizio A; Zanin G
    Environ Toxicol Chem; 2009 Apr; 28(4):853-63. PubMed ID: 19391688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Windbreaks as a pesticide drift mitigation strategy: a review.
    Ucar T; Hall FR
    Pest Manag Sci; 2001 Aug; 57(8):663-75. PubMed ID: 11517719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique.
    Gregorio E; Torrent X; Planas S; Rosell-Polo JR
    Sci Total Environ; 2019 Oct; 687():967-977. PubMed ID: 31412500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visualization of the evolution of bubbles in the spray sheet discharged from the air-induction nozzle.
    Gong C; Li D; Kang C
    Pest Manag Sci; 2022 May; 78(5):1850-1860. PubMed ID: 35060319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First report of severe tolpyralate sensitivity in corn (Zea mays) discovers a novel genetic factor conferring crop response to a herbicide.
    Williams MM; Hausman NE; Saballos A; Landau CA; Brooks MD; Flannery P; Tracy WF; Thompson CJ
    Pest Manag Sci; 2024 Mar; 80(3):1645-1653. PubMed ID: 37986260
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spray drift evaluation with point clouds data of 3D LiDAR as a potential alternative to the sampling method.
    Li L; Zhang R; Chen L; Liu B; Zhang L; Tang Q; Ding C; Zhang Z; Hewitt AJ
    Front Plant Sci; 2022; 13():939733. PubMed ID: 35923876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods.
    Grella M; Marucco P; Balsari P
    Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Classification of spray nozzles based on droplet size distributions and wind tunnel tests.
    De Schamphelerie M; Spanoghe P; Nuyttens D; Baetens K; Cornelis W; Gabriels D; Van der Meeren P
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):201-7. PubMed ID: 17390794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition.
    Dai S; Ou M; Du W; Yang X; Dong X; Jiang L; Zhang T; Ding S; Jia W
    Front Plant Sci; 2023; 14():1184244. PubMed ID: 37223814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides.
    Hornby JA; Robinson J; Opp W; Sterling M
    J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rotary and High-Pressure Nozzle Spray Plume Droplet Analysis For Aerially Applied Mosquito Adulticides: Laser Diffraction Characterization.
    Hornby JA; Robinson J; Sterling M
    J Am Mosq Control Assoc; 2017 Mar; 33(1):43-49. PubMed ID: 28388318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Factors affecting aerial spray drift in the Brazilian Cerrado.
    Baio FHR; Antuniassi UR; Castilho BR; Teodoro PE; Silva EED
    PLoS One; 2019; 14(2):e0212289. PubMed ID: 30779797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements.
    Maertens W; Nuyttens D; Sonck B
    Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.