These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29688690)

  • 1. Three-Dimensionally Printed Micro-electromechanical Switches.
    Lee Y; Han J; Choi B; Yoon J; Park J; Kim Y; Lee J; Kim DH; Kim DM; Lim M; Kang MH; Kim S; Choi SJ
    ACS Appl Mater Interfaces; 2018 May; 10(18):15841-15846. PubMed ID: 29688690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new switching device for printed electronics: inkjet-printed microelectromechanical relay.
    Park ES; Chen Y; Liu TJ; Subramanian V
    Nano Lett; 2013; 13(11):5355-60. PubMed ID: 24090078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of surgical instruments for long-duration space missions.
    Wong JY; Pfahnl AC
    Aviat Space Environ Med; 2014 Jul; 85(7):758-63. PubMed ID: 25022166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.
    Favero CS; English JD; Cozad BE; Wirthlin JO; Short MM; Kasper FK
    Am J Orthod Dentofacial Orthop; 2017 Oct; 152(4):557-565. PubMed ID: 28962741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple, low-cost conductive composite material for 3D printing of electronic sensors.
    Leigh SJ; Bradley RJ; Purssell CP; Billson DR; Hutchins DA
    PLoS One; 2012; 7(11):e49365. PubMed ID: 23185319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.
    Yoon J; Han J; Choi B; Lee Y; Kim Y; Park J; Lim M; Kang MH; Kim DH; Kim DM; Kim S; Choi SJ
    ACS Nano; 2018 Jun; 12(6):6006-6012. PubMed ID: 29791138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed origami electronics using percolative conductors.
    Jo Y; Jeong DW; Lee JO; Choi Y; Jeong S
    RSC Adv; 2018 Jun; 8(40):22755-22762. PubMed ID: 35539749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance inkjet-printed four-terminal microelectromechanical relays and inverters.
    Chung S; Ul Karim MA; Kwon HJ; Subramanian V
    Nano Lett; 2015 May; 15(5):3261-6. PubMed ID: 25830693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the angle of acuteness of additive manufactured models and the direction of printing on the dimensional fidelity: clinical implications.
    Ide Y; Nayar S; Logan H; Gallagher B; Wolfaardt J
    Odontology; 2017 Jan; 105(1):108-115. PubMed ID: 26995273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro 3D printing of a functional MEMS accelerometer.
    Pagliano S; Marschner DE; Maillard D; Ehrmann N; Stemme G; Braun S; Villanueva LG; Niklaus F
    Microsyst Nanoeng; 2022; 8():105. PubMed ID: 36133693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Graphene Electrodes' Electrochemical Activation.
    Browne MP; Novotný F; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40294-40301. PubMed ID: 30398834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization.
    Michiels S; D'Hollander A; Lammens N; Kersemans M; Zhang G; Denis JM; Poels K; Sterpin E; Nuyts S; Haustermans K; Depuydt T
    Med Phys; 2016 Oct; 43(10):5392. PubMed ID: 27782703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly(ethylene-co-methacrylic acid).
    Zhao Z; Peng F; Cavicchi KA; Cakmak M; Weiss RA; Vogt BD
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27239-27249. PubMed ID: 28741361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional printing: technologies, applications, and limitations in neurosurgery.
    Pucci JU; Christophe BR; Sisti JA; Connolly ES
    Biotechnol Adv; 2017 Sep; 35(5):521-529. PubMed ID: 28552791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine.
    Ragazou K; Lougkovois R; Katseli V; Kokkinos C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.