BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29689157)

  • 1. pH-Responsive Coacervate Droplets Formed from Acid-Labile Methylated Polyrotaxanes as an Injectable Protein Carrier.
    Nishida K; Tamura A; Yui N
    Biomacromolecules; 2018 Jun; 19(6):2238-2247. PubMed ID: 29689157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ER stress-mediated autophagic cell death induction through methylated β-cyclodextrins-threaded acid-labile polyrotaxanes.
    Nishida K; Tamura A; Yui N
    J Control Release; 2018 Apr; 275():20-31. PubMed ID: 29428200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylation of Cyclodextrin-Threaded Polyrotaxanes Yields Temperature-Responsive Phase Transition and Coacervate Formation Properties.
    Tonegawa A; Tamura A; Yui N
    Macromol Rapid Commun; 2020 Sep; 41(17):e2000322. PubMed ID: 32767501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intracellularly Degradable Polyrotaxanes for Therapeutic Applications].
    Tamura A
    Yakugaku Zasshi; 2019; 139(2):143-155. PubMed ID: 30713223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-Induced Intracellular Dissociation of β-Cyclodextrin-Threaded Polyrotaxanes Directed toward Attenuating Phototoxicity of Bisretinoids through Promoting Excretion.
    Tamura A; Ohashi M; Nishida K; Yui N
    Mol Pharm; 2017 Dec; 14(12):4714-4724. PubMed ID: 29120644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular cyclodextrin pseudorotaxane hydrogels: a candidate for sustained release?
    Chee PL; Prasad A; Fang X; Owh C; Yeo VJ; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():6-12. PubMed ID: 24863190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein.
    Zhao J; Zhao X; Guo B; Ma PX
    Biomacromolecules; 2014 Sep; 15(9):3246-52. PubMed ID: 25102223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes.
    Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H
    J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic.
    Kang JH; Hwang JY; Seo JW; Kim HS; Shin US
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():247-254. PubMed ID: 30033252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An antibody-supermolecule conjugate for tumor-specific targeting of tumoricidal methylated β-cyclodextrin-threaded polyrotaxanes.
    Nishida K; Tamura A; Kang TW; Masuda H; Yui N
    J Mater Chem B; 2020 Aug; 8(31):6975-6987. PubMed ID: 32573639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Tumor Targeting and Antitumor Activity of Methylated β-Cyclodextrin-Threaded Polyrotaxanes by Conjugating Cyclic RGD Peptides.
    Zhang S; Tamura A; Yui N
    Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aldehyde-functionalized dendritic mesoporous silica nanoparticles as potential nanocarriers for pH-responsive protein drug delivery.
    Tian Z; Xu Y; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():452-459. PubMed ID: 27987731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic Polyrotaxanes as a Feasible Framework for the Intracellular Delivery and Sustainable Activity of Anionic Enzymes: A Comparison Study with Methacrylate-Based Polycations.
    Tamura A; Ikeda G; Nishida K; Yui N
    Macromol Biosci; 2015 Aug; 15(8):1134-45. PubMed ID: 25923376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.
    Labala S; Mandapalli PK; Bhatnagar S; Venuganti VV
    Drug Dev Ind Pharm; 2015; 41(8):1302-10. PubMed ID: 25104114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions.
    Ohashi M; Tamura A; Yui N
    Langmuir; 2021 Sep; 37(37):11102-11114. PubMed ID: 34478294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coacervate-directed synthesis of CaCO
    Lauth V; Maas M; Rezwan K
    J Mater Chem B; 2014 Nov; 2(44):7725-7731. PubMed ID: 32261908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyrotaxane-based systemic delivery of β-cyclodextrins for potentiating therapeutic efficacy in a mouse model of Niemann-Pick type C disease.
    Tamura A; Yui N
    J Control Release; 2018 Jan; 269():148-158. PubMed ID: 29138063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery.
    Liu TY; Chen SY; Liu DM; Liou SC
    J Control Release; 2005 Sep; 107(1):112-21. PubMed ID: 15982777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization.
    Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN
    J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery.
    Salehiabar M; Nosrati H; Javani E; Aliakbarzadeh F; Kheiri Manjili H; Davaran S; Danafar H
    Int J Biol Macromol; 2018 Aug; 115():83-89. PubMed ID: 29653171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.