BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29689436)

  • 1. Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge.
    Hu Q; Sun J; Sun D; Tian L; Ji Y; Qiu B
    Bioresour Technol; 2018 Aug; 262():15-21. PubMed ID: 29689436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(III) enhances Cr(VI) bioreduction in a MFC-granular sludge coupling system: Experimental evidence and metagenomics analysis.
    Su C; Xian Y; Qin R; Zhou Y; Lu M; Wan X; Chen Z; Chen M
    Water Res; 2023 May; 235():119863. PubMed ID: 36933314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium.
    Durán U; Coronado-Apodaca KG; Meza-Escalante ER; Ulloa-Mercado G; Serrano D
    Chemosphere; 2018 May; 198():191-197. PubMed ID: 29421729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems.
    Stasinakis AS; Thomaidis NS; Mamais D; Lekkas TD
    Chemosphere; 2004 Dec; 57(9):1069-77. PubMed ID: 15504465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic-aerobic activated sludge process.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1713-21. PubMed ID: 16023575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effect of sulfate on the anaerobic oxidation of methane coupled with Cr(VI) bioreduction by sludge characteristic and metagenomics analysis.
    Qin R; Dai X; Xian Y; Zhou Y; Su C; Chen Z; Lu X; Ai C; Lu Y
    J Environ Manage; 2024 Jan; 349():119398. PubMed ID: 37897905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal mechanism of low-concentration Cr (VI) in a submerged membrane bioreactor activated sludge system.
    Xia S; Zhou L; Zhang Z; Hermanowicz SW
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5351-60. PubMed ID: 25921804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium(VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: Impact of operational conditions.
    Sun Y; Lan J; Du Y; Guo L; Du D; Chen S; Ye H; Zhang TC
    Bioresour Technol; 2020 Apr; 302():121974. PubMed ID: 31981808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor.
    Kiran Kumar Reddy G; Nancharaiah YV
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1969-1979. PubMed ID: 29105040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characterization of Cr (VI) removal and total Cr equilibrium adsorption by sulfate reducing granular sludge in stimulant wastewater].
    Luo J; Pang ZH; Hu YY; Zhong HT; Chen JY; Lin FM
    Huan Jing Ke Xue; 2010 Nov; 31(11):2691-8. PubMed ID: 21250453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.
    Tapia-Rodriguez A; Luna-Velasco A; Field JA; Sierra-Alvarez R
    Water Res; 2010 Apr; 44(7):2153-62. PubMed ID: 20060558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling Cr(VI) removal by a combined carbon-activated sludge system.
    Orozco AM; Contreras EM; Zaritzky NE
    J Hazard Mater; 2008 Jan; 150(1):46-52. PubMed ID: 17543453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium species behaviour in the activated sludge process.
    Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD
    Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1722-9. PubMed ID: 16023576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of anaerobic granular sludge for chromium (VI) removal from wastewater: optimization by response surface methodology.
    Hu Y; Yang C; Dan J; Pu W; Yang J
    Water Sci Technol; 2017 Sep; 76(5-6):1112-1123. PubMed ID: 28876252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid.
    Chen H; Jin R; Liu G; Tian T; Gu C; Zhou J; Xing D
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):5065-5075. PubMed ID: 30604364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound mediated reduction of Cr(VI) using sludge obtained during electrocoagulation.
    Kathiravan MN; Muthukumar K
    Environ Technol; 2011 Oct; 32(13-14):1523-31. PubMed ID: 22329143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.