These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29689490)

  • 21. The dynamic action mechanism of small cationic antimicrobial peptides.
    Lopez Cascales JJ; Garro A; Porasso RD; Enriz RD
    Phys Chem Chem Phys; 2014 Oct; 16(39):21694-705. PubMed ID: 25198294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium cholate interactions with rabbit's pulmonary surfactant.
    Donoso P; Oyarzün MJ; Segovia A; Guerrero M; Puig F
    Biol Neonate; 1984; 45(5):252-6. PubMed ID: 6547063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the adsorption of salmon calcitonin, antimicrobial peptide AP114 and polymyxin B onto lipid nanocapsules.
    Umerska A; Matougui N; Groo AC; Saulnier P
    Int J Pharm; 2016 Jun; 506(1-2):191-200. PubMed ID: 27113868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.
    Mansour HM; Damodaran S; Zografi G
    Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The insertion of Polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state.
    Alvares DS; Wilke N; Ruggiero Neto J; Fanani ML
    Chem Phys Lipids; 2017 Oct; 207(Pt A):38-48. PubMed ID: 28802697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity.
    Finger S; Kerth A; Dathe M; Blume A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial peptides in action.
    Leontiadou H; Mark AE; Marrink SJ
    J Am Chem Soc; 2006 Sep; 128(37):12156-61. PubMed ID: 16967965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle translocation across the lung surfactant film regulated by grafting polymers.
    Bai X; Li M; Hu G
    Nanoscale; 2020 Feb; 12(6):3931-3940. PubMed ID: 32003385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of cholesterol on electrostatics in lipid-protein films of a pulmonary surfactant.
    Finot E; Leonenko Y; Moores B; Eng L; Amrein M; Leonenko Z
    Langmuir; 2010 Feb; 26(3):1929-35. PubMed ID: 20050607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface activity of amphiphilic helical beta-peptides from molecular dynamics simulation.
    Miller CA; Abbott NL; de Pablo JJ
    Langmuir; 2009 Mar; 25(5):2811-23. PubMed ID: 19437698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical surface potential of pulmonary surfactant.
    Leonenko Z; Rodenstein M; Döhner J; Eng LM; Amrein M
    Langmuir; 2006 Nov; 22(24):10135-9. PubMed ID: 17107011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity.
    Maturana P; Martinez M; Noguera ME; Santos NC; Disalvo EA; Semorile L; Maffia PC; Hollmann A
    Colloids Surf B Biointerfaces; 2017 May; 153():152-159. PubMed ID: 28236791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of a new branched antimicrobial peptide: a comparison of force fields.
    Li J; Lakshminarayanan R; Bai Y; Liu S; Zhou L; Pervushin K; Verma C; Beuerman RW
    J Chem Phys; 2012 Dec; 137(21):215101. PubMed ID: 23231260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of structural parameters and positive charge distance on the interaction free energy of antimicrobial peptides with membrane surface.
    Ghahremanpour MM; Sardari S
    J Biomol Struct Dyn; 2015; 33(3):502-12. PubMed ID: 24621111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle.
    Choe S; Chang R; Jeon J; Violi A
    Biophys J; 2008 Nov; 95(9):4102-14. PubMed ID: 18923102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability.
    Li J; Liu S; Lakshminarayanan R; Bai Y; Pervushin K; Verma C; Beuerman RW
    Biochim Biophys Acta; 2013 Mar; 1828(3):1112-21. PubMed ID: 23274275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.