BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29689765)

  • 1. Characterization of CT Hounsfield Units for 3D acquisition trajectories on a dedicated breast CT system.
    Shah JP; Mann SD; McKinley RL; Tornai MP
    J Xray Sci Technol; 2018; 26(4):535-551. PubMed ID: 29689765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT.
    Shah JP; Mann SD; McKinley RL; Tornai MP
    Med Phys; 2015 Aug; 42(8):4497-510. PubMed ID: 26233179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A breast-specific, negligible-dose scatter correction technique for dedicated cone-beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy.
    Yang K; Burkett G; Boone JM
    Phys Med Biol; 2014 Nov; 59(21):6487-505. PubMed ID: 25310586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS).
    Godfrey DJ; Ren L; Yan H; Wu Q; Yoo S; Oldham M; Yin FF
    Med Phys; 2007 Aug; 34(8):3374-84. PubMed ID: 17879800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.
    Ning R; Tang X; Conover D; Yu R
    Med Phys; 2003 Jul; 30(7):1694-705. PubMed ID: 12906186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-domain shading correction for cone-beam CT without prior patient information.
    Fan Q; Lu B; Park JC; Niu T; Li JG; Liu C; Zhu L
    J Appl Clin Med Phys; 2015 Nov; 16(6):65-75. PubMed ID: 26699555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging.
    So A; Imai Y; Nett B; Jackson J; Nett L; Hsieh J; Wisenberg G; Teefy P; Yadegari A; Islam A; Lee TY
    Med Phys; 2016 Aug; 43(8):4821. PubMed ID: 27487900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
    Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L
    Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of z-axis resolution and image noise for nonconstant velocity spiral CT data reconstructed using a weighted 3D filtered backprojection (WFBP) reconstruction algorithm.
    Christner JA; Stierstorfer K; Primak AN; Eusemann CD; Flohr TG; McCollough CH
    Med Phys; 2010 Feb; 37(2):897-906. PubMed ID: 20229899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits.
    Baek J; Pelc NJ
    Med Phys; 2010 Oct; 37(10):5351-60. PubMed ID: 21089770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of the CT numbers of simulated lung nodules imaged with multi-detector CT scanners.
    Goodsitt MM; Chan HP; Way TW; Larson SC; Christodoulou EG; Kim J
    Med Phys; 2006 Aug; 33(8):3006-17. PubMed ID: 16964879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of X-ray scattering for various phantoms and clinical breast geometries using breast CT on a dedicated hybrid system.
    Shah JP; Mann SD; Tornai MP
    J Xray Sci Technol; 2017; 25(3):373-389. PubMed ID: 28157120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of dedicated emission mammotomography for various breast shapes and sizes.
    Brzymialkiewicz CN; Tornai MP; McKinley RL; Cutler SJ; Bowsher JE
    Phys Med Biol; 2006 Oct; 51(19):5051-64. PubMed ID: 16985287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Image Quality of On-Board Cone-Beam CT in Radiation Therapy Using Image Information Provided by Planning Multi-Detector CT: A Phantom Study.
    Yang CC; Chen FL; Lo YC
    PLoS One; 2016; 11(6):e0157072. PubMed ID: 27280593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated scatter performance of an inverse-geometry dedicated breast CT system.
    Bhagtani R; Schmidt TG
    Med Phys; 2009 Mar; 36(3):788-96. PubMed ID: 19378739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on circular isocentric cone-beam trajectories for 3D image reconstructions using FDK algorithm.
    Soimu D; Buliev I; Pallikarakis N
    Comput Med Imaging Graph; 2008 Apr; 32(3):210-20. PubMed ID: 18255264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the dose distribution for a cone beam CT system dedicated to breast imaging.
    Lanconelli N; Mettivier G; Lo Meo S; Russo P
    Phys Med; 2013 Jun; 29(4):379-87. PubMed ID: 22763280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative imaging in breast tomosynthesis and CT: comparison of detection and estimation task performance.
    Richard S; Samei E
    Med Phys; 2010 Jun; 37(6):2627-37. PubMed ID: 20632574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observer detection limits for a dedicated SPECT breast imaging system.
    Cutler SJ; Perez KL; Barnhart HX; Tornai MP
    Phys Med Biol; 2010 Apr; 55(7):1903-16. PubMed ID: 20224159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.