These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29690532)

  • 1. A Wearable Gait Phase Detection System Based on Force Myography Techniques.
    Jiang X; Chu KHT; Khoshnam M; Menon C
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable step counting using a force myography-based ankle strap.
    Chu KH; Jiang X; Menon C
    J Rehabil Assist Technol Eng; 2017; 4():2055668317746307. PubMed ID: 31186946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait.
    Das R; Paul S; Mourya GK; Kumar N; Hussain M
    Front Neurosci; 2022; 16():859298. PubMed ID: 35495059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals.
    Ensink C; Smulders K; Warnar J; Keijsers N
    PeerJ; 2023; 11():e16641. PubMed ID: 38111664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Force Myography-Based Approach for Continuous Estimation of Knee Joint Angle in Lower Limb Amputees and Able-Bodied Subjects.
    Kumar A; Godiyal AK; Joshi P; Joshi D
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):701-710. PubMed ID: 32396114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Detection of Seven Phases of Gait in Children with Cerebral Palsy Using Two Gyroscopes.
    Behboodi A; Zahradka N; Wright H; Alesi J; Lee SCK
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait Phase Detection Based on Muscle Deformation with Static Standing-Based Calibration.
    Miyake T; Yamamoto S; Hosono S; Funabashi S; Cheng Z; Zhang C; Tamaki E; Sugano S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults.
    Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U
    Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wearable Force Myography-Based Armband for Recognition of Upper Limb Gestures.
    Rehman MU; Shah K; Haq IU; Iqbal S; Ismail MA
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wearable walking monitoring system for gait analysis.
    Hsieh TH; Tsai AC; Chang CW; Ho KH; Hsu WL; Lin TT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6772-5. PubMed ID: 23367484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring Spatiotemporal Parameters on Treadmill Walking Using Wearable Inertial System.
    Scataglini S; Verwulgen S; Roosens E; Haelterman R; Van Tiggelen D
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable inertial sensors are highly sensitive in the detection of gait disturbances and fatigue at early stages of multiple sclerosis.
    Müller R; Hamacher D; Hansen S; Oschmann P; Keune PM
    BMC Neurol; 2021 Sep; 21(1):337. PubMed ID: 34481481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals.
    Gantenbein J; Ahmadizadeh C; Heeb O; Lambercy O; Menon C
    J Neuroeng Rehabil; 2023 Aug; 20(1):101. PubMed ID: 37537602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Treadmill Walking on Gait and Upper Trunk through Linear and Nonlinear Analysis Methods.
    Shi L; Duan F; Yang Y; Sun Z
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31086054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy validation of a wearable IMU-based gait analysis in healthy female.
    He Y; Chen Y; Tang L; Chen J; Tang J; Yang X; Su S; Zhao C; Xiao N
    BMC Sports Sci Med Rehabil; 2024 Jan; 16(1):2. PubMed ID: 38167148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges of Stride Segmentation and Their Implementation for Impaired Gait.
    Bobic VN; Djuric-Jovieic MD; Radovanovic SM; Dragaevic NT; Kostic VS; Popovic MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2284-2287. PubMed ID: 30440862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of Spatio-Temporal Gait Parameters in Healthy Young Adults Using a Motion-Sensor-Based Gait Analysis System (ORPHE ANALYTICS) during Walking and Running.
    Uno Y; Ogasawara I; Konda S; Yoshida N; Otsuka N; Kikukawa Y; Tsujii A; Nakata K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of an inertial sensor-based system for the assessment of spatio-temporal parameters in people with multiple sclerosis.
    Zahn A; Koch V; Schreff L; Oschmann P; Winkler J; Gaßner H; Müller R
    Front Neurol; 2023; 14():1164001. PubMed ID: 37153677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Gait Phase Detection Delay Compensation Strategies to Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking.
    Zahradka N; Behboodi A; Wright H; Bodt B; Lee S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.