These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 29690587)

  • 21. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming.
    Suganuma M; Kobayashi M; Shirakawa S; Nagao T
    Evol Comput; 2020; 28(1):141-163. PubMed ID: 30900927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors.
    Al Machot F; Elmachot A; Ali M; Al Machot E; Kyamakya K
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Graphs to Perform Effective Sensor-Based Human Activity Recognition in Smart Homes.
    P S; Plötz T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.
    Ponce H; Martínez-Villaseñor Mde L; Miralles-Pechuán L
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.
    Ravi D; Wong C; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):56-64. PubMed ID: 28026792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust human locomotion and localization activity recognition over multisensory.
    Khan D; Alonazi M; Abdelhaq M; Al Mudawi N; Algarni A; Jalal A; Liu H
    Front Physiol; 2024; 15():1344887. PubMed ID: 38449788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epithelium-Stroma Classification via Convolutional Neural Networks and Unsupervised Domain Adaptation in Histopathological Images.
    Huang Y; Zheng H; Liu C; Ding X; Rohde GK
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1625-1632. PubMed ID: 28410112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic discovery of resource-restricted Convolutional Neural Network topologies for myoelectric pattern recognition.
    Olsson AE; Björkman A; Antfolk C
    Comput Biol Med; 2020 May; 120():103723. PubMed ID: 32421642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated EEG-based screening of depression using deep convolutional neural network.
    Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adeli H; Subha DP
    Comput Methods Programs Biomed; 2018 Jul; 161():103-113. PubMed ID: 29852953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MaskCAE: Masked Convolutional AutoEncoder via Sensor Data Reconstruction for Self-Supervised Human Activity Recognition.
    Cheng D; Zhang L; Qin L; Wang S; Wu H; Song A
    IEEE J Biomed Health Inform; 2024 May; 28(5):2687-2698. PubMed ID: 38442051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CSITime: Privacy-preserving human activity recognition using WiFi channel state information.
    Yadav SK; Sai S; Gundewar A; Rathore H; Tiwari K; Pandey HM; Mathur M
    Neural Netw; 2022 Feb; 146():11-21. PubMed ID: 34839089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representation learning for mammography mass lesion classification with convolutional neural networks.
    Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA
    Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.