These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 29690904)
1. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Li T; Jia L; Cao Y; Chen Q; Li C Genome Biol; 2018 Apr; 19(1):54. PubMed ID: 29690904 [TBL] [Abstract][Full Text] [Related]
2. Using Open Chromatin Enrichment and Network Hi-C (OCEAN-C) to Identify Open Chromatin Interactions. Jia L; Li C; Li T Methods Mol Biol; 2021; 2351():211-227. PubMed ID: 34382192 [TBL] [Abstract][Full Text] [Related]
3. HiCoP, a simple and robust method for detecting interactions of regulatory regions. Zhang Y; Li Z; Bian S; Zhao H; Feng D; Chen Y; Hou Y; Liu Q; Hao B Epigenetics Chromatin; 2020 Jul; 13(1):27. PubMed ID: 32611439 [TBL] [Abstract][Full Text] [Related]
4. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin. Thibodeau A; Márquez EJ; Shin DG; Vera-Licona P; Ucar D Sci Rep; 2017 Oct; 7(1):14466. PubMed ID: 29089515 [TBL] [Abstract][Full Text] [Related]
5. A predictive modeling approach for cell line-specific long-range regulatory interactions. Roy S; Siahpirani AF; Chasman D; Knaack S; Ay F; Stewart R; Wilson M; Sridharan R Nucleic Acids Res; 2015 Oct; 43(18):8694-712. PubMed ID: 26338778 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Sahlén P; Abdullayev I; Ramsköld D; Matskova L; Rilakovic N; Lötstedt B; Albert TJ; Lundeberg J; Sandberg R Genome Biol; 2015 Aug; 16(1):156. PubMed ID: 26313521 [TBL] [Abstract][Full Text] [Related]
7. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Cubeñas-Potts C; Rowley MJ; Lyu X; Li G; Lei EP; Corces VG Nucleic Acids Res; 2017 Feb; 45(4):1714-1730. PubMed ID: 27899590 [TBL] [Abstract][Full Text] [Related]
8. The Causes and Consequences of Spatial Organization of the Genome in Regulation of Gene Expression. Agelopoulos M; Foutadakis S; Thanos D Front Immunol; 2021; 12():682397. PubMed ID: 34149720 [TBL] [Abstract][Full Text] [Related]
9. Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions. Cao F; Fang Y; Tan HK; Goh Y; Choy JYH; Koh BTH; Hao Tan J; Bertin N; Ramadass A; Hunter E; Green J; Salter M; Akoulitchev A; Wang W; Chng WJ; Tenen DG; Fullwood MJ Sci Rep; 2017 May; 7(1):2186. PubMed ID: 28526829 [TBL] [Abstract][Full Text] [Related]
10. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data. Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628 [TBL] [Abstract][Full Text] [Related]
11. Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. Hu Z; Tee WW Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28351896 [TBL] [Abstract][Full Text] [Related]
12. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Glinsky GV Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803 [TBL] [Abstract][Full Text] [Related]
13. DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. Sharifi-Zarchi A; Gerovska D; Adachi K; Totonchi M; Pezeshk H; Taft RJ; Schöler HR; Chitsaz H; Sadeghi M; Baharvand H; Araúzo-Bravo MJ BMC Genomics; 2017 Dec; 18(1):964. PubMed ID: 29233090 [TBL] [Abstract][Full Text] [Related]
15. Open chromatin interaction maps reveal functional regulatory elements and chromatin architecture variations during wheat evolution. Yuan J; Sun H; Wang Y; Li L; Chen S; Jiao W; Jia G; Wang L; Mao J; Ni Z; Wang X; Song Q Genome Biol; 2022 Jan; 23(1):34. PubMed ID: 35073966 [TBL] [Abstract][Full Text] [Related]
16. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Ay F; Bailey TL; Noble WS Genome Res; 2014 Jun; 24(6):999-1011. PubMed ID: 24501021 [TBL] [Abstract][Full Text] [Related]
17. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling. Davie K; Jacobs J; Atkins M; Potier D; Christiaens V; Halder G; Aerts S PLoS Genet; 2015 Feb; 11(2):e1004994. PubMed ID: 25679813 [TBL] [Abstract][Full Text] [Related]
18. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910 [TBL] [Abstract][Full Text] [Related]
19. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells. Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138 [TBL] [Abstract][Full Text] [Related]
20. Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development. Phanstiel DH; Van Bortle K; Spacek D; Hess GT; Shamim MS; Machol I; Love MI; Aiden EL; Bassik MC; Snyder MP Mol Cell; 2017 Sep; 67(6):1037-1048.e6. PubMed ID: 28890333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]