These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29691014)

  • 1. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover.
    Xu J; Krietemeyer EF; Boddu VM; Liu SX; Liu WC
    Carbohydr Polym; 2018 Jul; 192():202-207. PubMed ID: 29691014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Use of Corn Stover-Derived Nanocellulose as a Stabilizer of Oil-in-Water Emulsion.
    Liu L; Gerard G; Peng Z; Yu Z
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
    Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J
    Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications.
    Nadeem H; Athar M; Dehghani M; Garnier G; Batchelor W
    Sci Total Environ; 2022 Aug; 836():155654. PubMed ID: 35508247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and Antifungal Activity of Lemongrass Essential Oil-Loaded Nanoemulsion Stabilized by Carboxylated Cellulose Nanofibrils and Surfactant.
    Liu L; Fisher KD; Friest MA; Gerard G
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of novel cellulose nanofibril and phenolic acid-based active and hydrophobic packaging films.
    LakshmiBalasubramaniam S; Howell C; Tajvidi M; Skonberg D
    Food Chem; 2022 Apr; 374():131773. PubMed ID: 34915376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic corn zein-modified cellulose nanofibril (CNF) films with antioxidant properties.
    LakshmiBalasubramaniam S; Tajvidi M; Skonberg D
    Food Chem; 2024 Nov; 458():140220. PubMed ID: 38943949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.
    Poyraz B; Tozluoğlu A; Candan Z; Demir A; Yavuz M
    Int J Biol Macromol; 2017 Nov; 104(Pt A):384-392. PubMed ID: 28602986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose and lignocellulose nanofibril suspensions and films: A comparison.
    Amini E; Hafez I; Tajvidi M; Bousfield DW
    Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of cellulose nanofibril on microstructures and physical properties of waterborne polyurethane-based nanocomposite films.
    Kim MS; Ryu KM; Lee SH; Choi YC; Jeong YG
    Carbohydr Polym; 2019 Dec; 225():115233. PubMed ID: 31521282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance.
    Yang W; Gao Y; Zuo C; Deng Y; Dai H
    Carbohydr Polym; 2019 Nov; 223():115050. PubMed ID: 31426951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, thermal and mechanical properties of composite films based on carboxymethylated nanocellulose and polyacrylamide.
    Ryu JH; Koo Han N; Lee JS; Jeong YG
    Carbohydr Polym; 2019 May; 211():84-90. PubMed ID: 30824107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.
    He X; Miao Y; Jiang X; Xu Z; Ouyang P
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2449-57. PubMed ID: 19669940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries.
    Lu H; Guccini V; Kim H; Salazar-Alvarez G; Lindbergh G; Cornell A
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37712-37720. PubMed ID: 28972727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions.
    Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X
    Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOCNC-g-PEI nanoparticle encapsulated oregano essential oil for enhancing the antimicrobial activity of cellulose nanofibril packaging films.
    Wu M; Yang J; Chen S; Lu P; Wang R
    Carbohydr Polym; 2021 Nov; 274():118654. PubMed ID: 34702473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.