These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29691019)

  • 1. Magnetically responsive and flexible bacterial cellulose membranes.
    Sriplai N; Mongkolthanaruk W; Eichhorn SJ; Pinitsoontorn S
    Carbohydr Polym; 2018 Jul; 192():251-262. PubMed ID: 29691019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation.
    Zheng Y; Yang J; Zheng W; Wang X; Xiang C; Tang L; Zhang W; Chen S; Wang H
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2407-12. PubMed ID: 23498276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline.
    Hu W; Chen S; Yang Z; Liu L; Wang H
    J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications.
    Lin WC; Lien CC; Yeh HJ; Yu CM; Hsu SH
    Carbohydr Polym; 2013 Apr; 94(1):603-11. PubMed ID: 23544580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties.
    Pogorelova N; Rogachev E; Digel I; Chernigova S; Nardin D
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32630464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled mercerization of bacterial cellulose provides tunability of modulus and ductility over two orders of magnitude.
    Younesi M; Wu X; Akkus O
    J Mech Behav Biomed Mater; 2019 Feb; 90():530-537. PubMed ID: 30469131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis.
    Cheng KC; Catchmark JM; Demirci A
    Biomacromolecules; 2011 Mar; 12(3):730-6. PubMed ID: 21250667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalized bacterial cellulose derivatives and nanocomposites.
    Hu W; Chen S; Yang J; Li Z; Wang H
    Carbohydr Polym; 2014 Jan; 101():1043-60. PubMed ID: 24299873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Deformation of Ferrofluid-Filled Elastic Alginate Capsules in Inhomogenous Magnetic Fields.
    Wischnewski C; Zwar E; Rehage H; Kierfeld J
    Langmuir; 2018 Nov; 34(45):13534-13543. PubMed ID: 30350708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances.
    Shao W; Wang S; Liu H; Wu J; Zhang R; Min H; Huang M
    Carbohydr Polym; 2016 Mar; 138():166-71. PubMed ID: 26794749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels.
    Si H; Luo H; Xiong G; Yang Z; Raman SR; Guo R; Wan Y
    Macromol Rapid Commun; 2014 Oct; 35(19):1706-11. PubMed ID: 25180660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.
    Iqbal HM; Kyazze G; Tron T; Keshavarz T
    Carbohydr Polym; 2014 Nov; 113():131-7. PubMed ID: 25256467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material.
    Marins JA; Soares BG; Barud HS; Ribeiro SJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3994-4001. PubMed ID: 23910306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
    Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T
    Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production, deformation and mechanical investigation of magnetic alginate capsules.
    Zwar E; Kemna A; Richter L; Degen P; Rehage H
    J Phys Condens Matter; 2018 Feb; 30(8):085101. PubMed ID: 29323659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite.
    Leitão AF; Silva JP; Dourado F; Gama M
    Materials (Basel); 2013 May; 6(5):1956-1966. PubMed ID: 28809253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linked bacterial cellulose networks using glyoxalization.
    Quero F; Nogi M; Lee KY; Vanden Poel G; Bismarck A; Mantalaris A; Yano H; Eichhorn SJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):490-9. PubMed ID: 21186815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose/silica nanocomposites: preparation and characterization.
    Ashori A; Sheykhnazari S; Tabarsa T; Shakeri A; Golalipour M
    Carbohydr Polym; 2012 Sep; 90(1):413-8. PubMed ID: 24751060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.