These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 29691019)
41. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Reiniati I; Hrymak AN; Margaritis A Crit Rev Biotechnol; 2017 Jun; 37(4):510-524. PubMed ID: 27248159 [TBL] [Abstract][Full Text] [Related]
42. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Yang Q; Saito T; Berglund LA; Isogai A Nanoscale; 2015 Nov; 7(42):17957-63. PubMed ID: 26465589 [TBL] [Abstract][Full Text] [Related]
43. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. Lopes TD; Riegel-Vidotti IC; Grein A; Tischer CA; Faria-Tischer PC Int J Biol Macromol; 2014 Jun; 67():401-8. PubMed ID: 24704166 [TBL] [Abstract][Full Text] [Related]
44. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. Zhao X; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900 [TBL] [Abstract][Full Text] [Related]
45. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Yuan N; Xu L; Zhang L; Ye H; Zhao J; Liu Z; Rong J Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():221-230. PubMed ID: 27287117 [TBL] [Abstract][Full Text] [Related]
46. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Trovatti E; Freire CS; Pinto PC; Almeida IF; Costa P; Silvestre AJ; Neto CP; Rosado C Int J Pharm; 2012 Oct; 435(1):83-7. PubMed ID: 22266531 [TBL] [Abstract][Full Text] [Related]
47. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Zaborowska M; Bodin A; Bäckdahl H; Popp J; Goldstein A; Gatenholm P Acta Biomater; 2010 Jul; 6(7):2540-7. PubMed ID: 20060935 [TBL] [Abstract][Full Text] [Related]
48. Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites. Szymańska-Chargot M; Chylińska M; Cybulska J; Kozioł A; Pieczywek PM; Zdunek A Carbohydr Polym; 2017 Oct; 174():970-979. PubMed ID: 28821155 [TBL] [Abstract][Full Text] [Related]
49. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171 [TBL] [Abstract][Full Text] [Related]
50. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Shahmohammadi Jebel F; Almasi H Carbohydr Polym; 2016 Sep; 149():8-19. PubMed ID: 27261725 [TBL] [Abstract][Full Text] [Related]
51. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Ul-Islam M; Khan S; Ullah MW; Park JK Biotechnol J; 2015 Dec; 10(12):1847-61. PubMed ID: 26395011 [TBL] [Abstract][Full Text] [Related]
52. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
53. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Bäckdahl H; Helenius G; Bodin A; Nannmark U; Johansson BR; Risberg B; Gatenholm P Biomaterials; 2006 Mar; 27(9):2141-9. PubMed ID: 16310848 [TBL] [Abstract][Full Text] [Related]
54. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Silva NH; Rodrigues AF; Almeida IF; Costa PC; Rosado C; Neto CP; Silvestre AJ; Freire CS Carbohydr Polym; 2014 Jun; 106():264-9. PubMed ID: 24721077 [TBL] [Abstract][Full Text] [Related]
55. Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution. Zhang H; Guo H; Wang B; Shi S; Xiong L; Chen X Carbohydr Polym; 2016 Jan; 136():171-6. PubMed ID: 26572343 [TBL] [Abstract][Full Text] [Related]
56. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Shao W; Liu H; Wang S; Wu J; Huang M; Min H; Liu X Carbohydr Polym; 2016 Jul; 145():114-20. PubMed ID: 27106158 [TBL] [Abstract][Full Text] [Related]
57. Bacterial cellulose in biomedical applications: A review. Picheth GF; Pirich CL; Sierakowski MR; Woehl MA; Sakakibara CN; de Souza CF; Martin AA; da Silva R; de Freitas RA Int J Biol Macromol; 2017 Nov; 104(Pt A):97-106. PubMed ID: 28587970 [TBL] [Abstract][Full Text] [Related]
58. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Ul-Islam M; Khan T; Park JK Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931 [TBL] [Abstract][Full Text] [Related]
59. Bacterial cellulose as a support for the growth of retinal pigment epithelium. Gonçalves S; Padrão J; Rodrigues IP; Silva JP; Sencadas V; Lanceros-Mendez S; Girão H; Dourado F; Rodrigues LR Biomacromolecules; 2015 Apr; 16(4):1341-51. PubMed ID: 25748276 [TBL] [Abstract][Full Text] [Related]
60. Bacterial cellulose as a potential meniscus implant. Bodin A; Concaro S; Brittberg M; Gatenholm P J Tissue Eng Regen Med; 2007; 1(5):406-8. PubMed ID: 18038435 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]