These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29691022)

  • 1. Improving the thermal stability of wood-based cellulose by esterification.
    Agustin MB; Nakatsubo F; Yano H
    Carbohydr Polym; 2018 Jul; 192():28-36. PubMed ID: 29691022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization.
    Agustin MB; Nakatsubo F; Yano H
    Carbohydr Polym; 2017 May; 164():1-7. PubMed ID: 28325304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion.
    Vaidya AA; Gaugler M; Smith DA
    Carbohydr Polym; 2016 Jan; 136():1238-50. PubMed ID: 26572467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of cellulose reducing end in pyrolysis as studied by methyl glucoside-impregnation.
    Matsuoka S; Kawamoto H; Saka S
    Carbohydr Res; 2016 Feb; 420():46-50. PubMed ID: 26717548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylan-cellulose films: improvement of hydrophobicity, thermal and mechanical properties.
    Gordobil O; Egüés I; Urruzola I; Labidi J
    Carbohydr Polym; 2014 Nov; 112():56-62. PubMed ID: 25129716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids.
    Xie H; King A; Kilpelainen I; Granstrom M; Argyropoulos DS
    Biomacromolecules; 2007 Dec; 8(12):3740-8. PubMed ID: 17979237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.
    Sehaqui H; Kulasinski K; Pfenninger N; Zimmermann T; Tingaut P
    Biomacromolecules; 2017 Jan; 18(1):242-248. PubMed ID: 27958715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal decomposition of wood: influence of wood components and cellulose crystallite size.
    Poletto M; Zattera AJ; Forte MM; Santana RM
    Bioresour Technol; 2012 Apr; 109():148-53. PubMed ID: 22306076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose.
    Bayani S; Taghiyari HR; Papadopoulos AN
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31547089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermochemical properties of cellulose acetate blends with acetosolv and sawdust lignin: A comparative study.
    Peredo K; Escobar D; Vega-Lara J; Berg A; Pereira M
    Int J Biol Macromol; 2016 Feb; 83():403-9. PubMed ID: 26582340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose esters from waste cotton fabric via conventional and microwave heating.
    Ratanakamnuan U; Atong D; Aht-Ong D
    Carbohydr Polym; 2012 Jan; 87(1):84-94. PubMed ID: 34663044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion.
    Ashori A; Babaee M; Jonoobi M; Hamzeh Y
    Carbohydr Polym; 2014 Feb; 102():369-75. PubMed ID: 24507293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride.
    Casas A; Alonso MV; Oliet M; Santos TM; Rodriguez F
    Carbohydr Polym; 2013 Feb; 92(2):1946-52. PubMed ID: 23399242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous esterification of poplar wood in an ionic liquid under mild conditions: characterization and properties.
    Yuan TQ; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2010 Nov; 58(21):11302-10. PubMed ID: 20932034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Safwan A; Sanyang ML; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Sep; 102():822-828. PubMed ID: 28455253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid.
    Liu Y; Wang H; Yu G; Yu Q; Li B; Mu X
    Carbohydr Polym; 2014 Sep; 110():415-22. PubMed ID: 24906774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose.
    Yamamoto M; Kuramae R; Yanagisawa M; Ishii D; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):3982-8. PubMed ID: 21928815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M; Wang LJ; Li D; Cheng YL; Adhikari B
    Carbohydr Polym; 2014 Feb; 102():136-43. PubMed ID: 24507265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.
    Lavoine N; Bras J; Saito T; Isogai A
    Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.