These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29691127)

  • 21. Functional Consequences of the
    Casini S; Albesa M; Wang Z; Portero V; Ross-Kaschitza D; Rougier JS; Marchal GA; Chung WK; Bezzina CR; Abriel H; Remme CA
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional effects of a missense mutation in HERG associated with type 2 long QT syndrome.
    Amorós I; Jiménez-Jáimez J; Tercedor L; Barana A; Gómez R; de la Fuente MG; Dolz-Gaitón P; Alvarez M; Martínez-Espín E; Lorente JA; Melgares R; Tamargo J; Delpón E; Caballero R
    Heart Rhythm; 2011 Mar; 8(3):463-70. PubMed ID: 21109023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A pore-localizing CACNA1C-E1115K missense mutation, identified in a patient with idiopathic QT prolongation, bradycardia, and autism spectrum disorder, converts the L-type calcium channel into a hybrid nonselective monovalent cation channel.
    Ye D; Tester DJ; Zhou W; Papagiannis J; Ackerman MJ
    Heart Rhythm; 2019 Feb; 16(2):270-278. PubMed ID: 30172029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome.
    Marcantoni A; Calorio C; Hidisoglu E; Chiantia G; Carbone E
    Pflugers Arch; 2020 Jul; 472(7):775-789. PubMed ID: 32621084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G.
    Boczek NJ; Gomez-Hurtado N; Ye D; Calvert ML; Tester DJ; Kryshtal D; Hwang HS; Johnson CN; Chazin WJ; Loporcaro CG; Shah M; Papez AL; Lau YR; Kanter R; Knollmann BC; Ackerman MJ
    Circ Cardiovasc Genet; 2016 Apr; 9(2):136-146. PubMed ID: 26969752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long QT syndrome caveolin-3 mutations differentially modulate K
    Tyan L; Foell JD; Vincent KP; Woon MT; Mesquitta WT; Lang D; Best JM; Ackerman MJ; McCulloch AD; Glukhov AV; Balijepalli RC; Kamp TJ
    J Physiol; 2019 Mar; 597(6):1531-1551. PubMed ID: 30588629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation analysis in congenital Long QT Syndrome--a case with missense mutations in KCNQ1 and SCN5A.
    Paulussen A; Matthijs G; Gewillig M; Verhasselt P; Cohen N; Aerssens J
    Genet Test; 2003; 7(1):57-61. PubMed ID: 12820704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The prevalence of mutations in KCNQ1, KCNH2, and SCN5A in an unselected national cohort of young sudden unexplained death cases.
    Winkel BG; Larsen MK; Berge KE; Leren TP; Nissen PH; Olesen MS; Hollegaard MV; Jespersen T; Yuan L; Nielsen N; Haunsø S; Svendsen JH; Wang Y; Kristensen IB; Jensen HK; Tfelt-Hansen J; Banner J
    J Cardiovasc Electrophysiol; 2012 Oct; 23(10):1092-8. PubMed ID: 22882672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential calcium sensitivity in Na
    Abdelsayed M; Baruteau AE; Gibbs K; Sanatani S; Krahn AD; Probst V; Ruben PC
    J Physiol; 2017 Sep; 595(18):6165-6186. PubMed ID: 28734073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CACNA1C variant associated with reduced voltage-dependent inactivation, increased CaV1.2 channel window current, and arrhythmogenesis.
    Hennessey JA; Boczek NJ; Jiang YH; Miller JD; Patrick W; Pfeiffer R; Sutphin BS; Tester DJ; Barajas-Martinez H; Ackerman MJ; Antzelevitch C; Kanter R; Pitt GS
    PLoS One; 2014; 9(9):e106982. PubMed ID: 25184293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disrupted Ca
    Kashiwa A; Makiyama T; Kohjitani H; Maurissen TL; Ishikawa T; Yamamoto Y; Wuriyanghai Y; Gao J; Huang H; Imamura T; Aizawa T; Nishikawa M; Chonabayashi K; Mishima H; Ohno S; Toyoda F; Sato S; Yoshiura KI; Takahashi K; Yoshida Y; Woltjen K; Horie M; Makita N; Kimura T
    Heart Rhythm; 2023 Jan; 20(1):89-99. PubMed ID: 36007726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics.
    Groenewegen WA; Bezzina CR; van Tintelen JP; Hoorntje TM; Mannens MM; Wilde AA; Jongsma HJ; Rook MB
    Cardiovasc Res; 2003 Mar; 57(4):1072-8. PubMed ID: 12650885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation.
    Pambrun T; Mercier A; Chatelier A; Patri S; Schott JJ; Le Scouarnec S; Chahine M; Degand B; Bois P
    Heart Rhythm; 2014 Aug; 11(8):1393-400. PubMed ID: 24768612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo.
    Tian XL; Yong SL; Wan X; Wu L; Chung MK; Tchou PJ; Rosenbaum DS; Van Wagoner DR; Kirsch GE; Wang Q
    Cardiovasc Res; 2004 Feb; 61(2):256-67. PubMed ID: 14736542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium channel abnormalities are infrequent in patients with long QT syndrome: identification of two novel SCN5A mutations.
    Wattanasirichaigoon D; Vesely MR; Duggal P; Levine JC; Blume ED; Wolff GS; Edwards SB; Beggs AH
    Am J Med Genet; 1999 Oct; 86(5):470-6. PubMed ID: 10508990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unique mixed phenotype and unexpected functional effect revealed by novel compound heterozygosity mutations involving SCN5A.
    Medeiros-Domingo A; Tan BH; Iturralde-Torres P; Tester DJ; Tusié-Luna T; Makielski JC; Ackerman MJ
    Heart Rhythm; 2009 Aug; 6(8):1170-5. PubMed ID: 19632629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Penetrance and expressivity of the R858H CACNA1C variant in a five-generation pedigree segregating an arrhythmogenic channelopathy.
    Gardner RJM; Crozier IG; Binfield AL; Love DR; Lehnert K; Gibson K; Lintott CJ; Snell RG; Jacobsen JC; Jones PP; Waddell-Smith KE; Kennedy MA; Skinner JR
    Mol Genet Genomic Med; 2019 Jan; 7(1):e00476. PubMed ID: 30345660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complex interactions in a novel SCN5A compound mutation associated with long QT and Brugada syndrome: Implications for Na+ channel blocking pharmacotherapy for de novo conduction disease.
    Liu J; Bayer JD; Aschar-Sobbi R; Wauchop M; Spears D; Gollob M; Vigmond EJ; Tsushima R; Backx PH; Chauhan VS
    PLoS One; 2018; 13(5):e0197273. PubMed ID: 29791480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death.
    Antzelevitch C; Pollevick GD; Cordeiro JM; Casis O; Sanguinetti MC; Aizawa Y; Guerchicoff A; Pfeiffer R; Oliva A; Wollnik B; Gelber P; Bonaros EP; Burashnikov E; Wu Y; Sargent JD; Schickel S; Oberheiden R; Bhatia A; Hsu LF; Haïssaguerre M; Schimpf R; Borggrefe M; Wolpert C
    Circulation; 2007 Jan; 115(4):442-9. PubMed ID: 17224476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome.
    Riuró H; Campuzano O; Arbelo E; Iglesias A; Batlle M; Pérez-Villa F; Brugada J; Pérez GJ; Scornik FS; Brugada R
    Heart Rhythm; 2014 Jul; 11(7):1202-9. PubMed ID: 24662403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.