These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 29691317)

  • 1. Cholesterol signaling in single cells: lessons from STAR and sm-FISH.
    Jefcoate CR; Lee J
    J Mol Endocrinol; 2018 May; 60(4):R213-R235. PubMed ID: 29691317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association.
    Larsen MC; Lee J; Jorgensen JS; Jefcoate CR
    Front Endocrinol (Lausanne); 2020; 11():559674. PubMed ID: 33193082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single cell level measurement of StAR expression and activity in adrenal cells.
    Lee J; Yamazaki T; Dong H; Jefcoate C
    Mol Cell Endocrinol; 2017 Feb; 441():22-30. PubMed ID: 27521960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of Dual CRISPR/Cas9-Mediated Steroidogenic Acute Regulatory Protein Gene Deletion and Cholesterol Accumulation Using High-Resolution Fluorescence
    Lee J; Jefcoate C
    Front Endocrinol (Lausanne); 2017; 8():289. PubMed ID: 29118738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of specific RNA in cultured cells through quantitative integration of q-PCR and N-SIM single cell FISH images: Application to hormonal stimulation of StAR transcription.
    Lee J; Foong YH; Musaitif I; Tong T; Jefcoate C
    Mol Cell Endocrinol; 2016 Jul; 429():93-105. PubMed ID: 27091298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steroid hormone synthesis in mitochondria.
    Miller WL
    Mol Cell Endocrinol; 2013 Oct; 379(1-2):62-73. PubMed ID: 23628605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased 27-hydroxycholesterol production during luteolysis may mediate the progressive decline in progesterone secretion.
    Xu Y; Hutchison SM; Hernández-Ledezma JJ; Bogan RL
    Mol Hum Reprod; 2018 Jan; 24(1):2-13. PubMed ID: 29177442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the mechanism of action and regulation of the steroidogenic acute regulatory protein.
    Kallen CB; Arakane F; Christenson LK; Watari H; Devoto L; Strauss JF
    Mol Cell Endocrinol; 1998 Oct; 145(1-2):39-45. PubMed ID: 9922097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter.
    Miller WL
    Biochim Biophys Acta; 2007 Jun; 1771(6):663-76. PubMed ID: 17433772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of StAR by the N-terminal Domain and Coinduction of SIK1 and TIS11b/Znf36l1 in Single Cells.
    Lee J; Tong T; Duan H; Foong YH; Musaitif I; Yamazaki T; Jefcoate C
    Front Endocrinol (Lausanne); 2016; 7():107. PubMed ID: 27531991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage (P450scc)-regulated steroidogenesis as an organ-specific molecular and cellular target for endocrine disrupting chemicals in fish.
    Arukwe A
    Cell Biol Toxicol; 2008 Dec; 24(6):527-40. PubMed ID: 18398688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramitochondrial cholesterol transfer.
    Stocco DM
    Biochim Biophys Acta; 2000 Jun; 1486(1):184-97. PubMed ID: 10856721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cholesterol access to cytochrome P450scc in rat adrenal cells mediated by regulation of the steroidogenic acute regulatory protein.
    Kim YC; Ariyoshi N; Artemenko I; Elliott ME; Bhattacharyya KK; Jefcoate CR
    Steroids; 1997 Jan; 62(1):10-20. PubMed ID: 9029709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the steroidogenic acute regulatory protein in health and disease.
    Manna PR; Stetson CL; Slominski AT; Pruitt K
    Endocrine; 2016 Jan; 51(1):7-21. PubMed ID: 26271515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function.
    Manna PR; Kero J; Tena-Sempere M; Pakarinen P; Stocco DM; Huhtaniemi IT
    Endocrinology; 2001 Jan; 142(1):319-31. PubMed ID: 11145595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells.
    Strauss JF; Kishida T; Christenson LK; Fujimoto T; Hiroi H
    Mol Cell Endocrinol; 2003 Apr; 202(1-2):59-65. PubMed ID: 12770731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel signaling stimulated by arsenite increases cholesterol metabolism through increases in unphosphorylated steroidogenic acute regulatory (StAR) protein.
    Zhao D; Xue H; Artemenko I; Jefcoate C
    Mol Cell Endocrinol; 2005 Feb; 231(1-2):95-107. PubMed ID: 15713539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential function of steroid sulphatase activity in steroid production and steroidogenic acute regulatory protein expression.
    Sugawara T; Fujimoto S
    Biochem J; 2004 May; 380(Pt 1):153-60. PubMed ID: 14969586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial specificity of the early steps in steroidogenesis.
    Miller WL
    J Steroid Biochem Mol Biol; 1995 Dec; 55(5-6):607-16. PubMed ID: 8547188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation.
    Manna PR; Chandrala SP; Jo Y; Stocco DM
    J Mol Endocrinol; 2006 Aug; 37(1):81-95. PubMed ID: 16901926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.