These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29691325)

  • 1. Phase behaviors of deeply supercooled bilayer water unseen in bulk water.
    Kaneko T; Bai J; Akimoto T; Francisco JS; Yasuoka K; Zeng XC
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4839-4844. PubMed ID: 29691325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure.
    Bai J; Zeng XC
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21240-5. PubMed ID: 23236178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube.
    Nomura K; Kaneko T; Bai J; Francisco JS; Yasuoka K; Zeng XC
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4066-4071. PubMed ID: 28373562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-order transition in confined water between high-density liquid and low-density amorphous phases.
    Koga K; Tanaka H; Zeng XC
    Nature; 2000 Nov; 408(6812):564-7. PubMed ID: 11117739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous and First-Order Liquid-Solid Phase Transitions in Two-Dimensional Water.
    Ma N; Zhao X; Liang X; Zhu W; Sun Y; Zhao W; Zeng XC
    J Phys Chem B; 2022 Nov; 126(43):8892-8899. PubMed ID: 36282573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AB-stacked square-like bilayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    Phys Chem Chem Phys; 2016 Aug; 18(32):22039-46. PubMed ID: 27468430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of amorphous ices.
    Limmer DT; Chandler D
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9413-8. PubMed ID: 24858957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2016 Aug; 145(5):054704. PubMed ID: 27497569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit.
    Jiang J; Gao Y; Zhu W; Liu Y; Zhu C; Francisco JS; Zeng XC
    J Am Chem Soc; 2021 Jun; 143(21):8177-8183. PubMed ID: 34008407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime.
    Mallamace F; Mensitieri G; Mallamace D; Salzano de Luna M; Chen SH
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice.
    Amann-Winkel K; Kim KH; Giovambattista N; Ladd-Parada M; Späh A; Perakis F; Pathak H; Yang C; Eklund T; Lane TJ; You S; Jeong S; Lee JH; Eom I; Kim M; Park J; Chun SH; Poole PH; Nilsson A
    Nat Commun; 2023 Jan; 14(1):442. PubMed ID: 36707522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water.
    Banerjee D; Bhat SN; Bhat SV; Leporini D
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11448-53. PubMed ID: 19556546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field.
    Lin B; Jiang J; Zeng XC; Li L
    Nat Commun; 2023 Jul; 14(1):4110. PubMed ID: 37433823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-liquid transition in supercooled water suggested by microsecond simulations.
    Li Y; Li J; Wang F
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12209-12. PubMed ID: 23836647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase diagram of water between hydrophobic surfaces.
    Koga K; Tanaka H
    J Chem Phys; 2005 Mar; 122(10):104711. PubMed ID: 15836349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Liquid-Liquid Phase Transitions in Confined Water Nanofilms.
    Pourasad S; Hajibabaei A; Myung CW; Kim KS
    J Phys Chem Lett; 2021 May; 12(20):4786-4792. PubMed ID: 33988370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of amorphous forms when ice is compressed at low temperature.
    Tulk CA; Molaison JJ; Makhluf AR; Manning CE; Klug DD
    Nature; 2019 May; 569(7757):542-545. PubMed ID: 31118522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.