BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 29691329)

  • 1. Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
    Barry J; Akopian G; Cepeda C; Levine MS
    J Neurosci; 2018 May; 38(20):4678-4694. PubMed ID: 29691329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced striatopallidal gamma-aminobutyric acid (GABA)
    Perez-Rosello T; Gelman S; Tombaugh G; Cachope R; Beaumont V; Surmeier DJ
    Mov Disord; 2019 May; 34(5):684-696. PubMed ID: 30726572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying the enhancement of γ-aminobutyric acid responses in the external globus pallidus of R6/2 Huntington's disease model mice.
    Barry J; Sarafian TA; Watson JB; Cepeda C; Levine MS
    J Neurosci Res; 2020 Nov; 98(11):2349-2356. PubMed ID: 32856336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington's disease.
    Akopian G; Barry J; Cepeda C; Levine MS
    J Neurosci Res; 2016 Dec; 94(12):1400-1410. PubMed ID: 27618125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease.
    Galvan L; André VM; Wang EA; Cepeda C; Levine MS
    J Huntingtons Dis; 2012; 1(1):17-25. PubMed ID: 25063187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs.
    Phillips RS; Rosner I; Gittis AH; Rubin JE
    Elife; 2020 Sep; 9():. PubMed ID: 32894224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease.
    Parievsky A; Moore C; Kamdjou T; Cepeda C; Meshul CK; Levine MS
    Neurobiol Dis; 2017 Dec; 108():29-44. PubMed ID: 28757327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic
    Callahan JW; Wokosin DL; Bevan MD
    J Neurosci; 2022 Mar; 42(10):2080-2102. PubMed ID: 35058372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple sources of striatal inhibition are differentially affected in Huntington's disease mouse models.
    Cepeda C; Galvan L; Holley SM; Rao SP; André VM; Botelho EP; Chen JY; Watson JB; Deisseroth K; Levine MS
    J Neurosci; 2013 Apr; 33(17):7393-406. PubMed ID: 23616545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington's disease.
    Allen KL; Waldvogel HJ; Glass M; Faull RL
    J Chem Neuroanat; 2009 Jul; 37(4):266-81. PubMed ID: 19481011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice.
    Klapstein GJ; Fisher RS; Zanjani H; Cepeda C; Jokel ES; Chesselet MF; Levine MS
    J Neurophysiol; 2001 Dec; 86(6):2667-77. PubMed ID: 11731527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations In Vivo.
    Ketzef M; Silberberg G
    Neuron; 2021 Feb; 109(3):516-529.e4. PubMed ID: 33248017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease.
    Indersmitten T; Tran CH; Cepeda C; Levine MS
    J Neurophysiol; 2015 Apr; 113(7):2953-66. PubMed ID: 25673747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered function of glutamatergic cortico-striatal synapses causes output pathway abnormalities in a chronic model of parkinsonism.
    Warre R; Thiele S; Talwar S; Kamal M; Johnston TH; Wang S; Lam D; Lo C; Khademullah CS; Perera G; Reyes G; Sun XS; Brotchie JM; Nash JE
    Neurobiol Dis; 2011 Mar; 41(3):591-604. PubMed ID: 20971190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.
    Cummings DM; Cepeda C; Levine MS
    ASN Neuro; 2010 Jun; 2(3):e00036. PubMed ID: 20585470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential electrophysiological changes in striatal output neurons in Huntington's disease.
    André VM; Cepeda C; Fisher YE; Huynh M; Bardakjian N; Singh S; Yang XW; Levine MS
    J Neurosci; 2011 Jan; 31(4):1170-82. PubMed ID: 21273402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington's disease.
    Cepeda C; Hurst RS; Calvert CR; Hernández-Echeagaray E; Nguyen OK; Jocoy E; Christian LJ; Ariano MA; Levine MS
    J Neurosci; 2003 Feb; 23(3):961-9. PubMed ID: 12574425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of unitary synaptic currents generated by indirect and direct pathway neurons of the mouse striatum.
    Jones JA; Peña J; Likhotvorik RI; Garcia-Castañeda BI; Wilson CJ
    J Neurophysiol; 2024 May; 131(5):914-936. PubMed ID: 38596834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early TNF-Dependent Regulation of Excitatory and Inhibitory Synapses on Striatal Direct Pathway Medium Spiny Neurons in the YAC128 Mouse Model of Huntington's Disease.
    Chambon J; Komal P; Lewitus GM; Kemp GM; Valade S; Adaïdi H; Al Bistami N; Stellwagen D
    J Neurosci; 2023 Jan; 43(4):672-680. PubMed ID: 36517241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased GABAergic function in mouse models of Huntington's disease: reversal by BDNF.
    Cepeda C; Starling AJ; Wu N; Nguyen OK; Uzgil B; Soda T; André VM; Ariano MA; Levine MS
    J Neurosci Res; 2004 Dec; 78(6):855-67. PubMed ID: 15505789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.