These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29691479)

  • 21. Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise.
    Klein DK; Pilegaard H; Treebak JT; Jensen TE; Viollet B; Schjerling P; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1242-9. PubMed ID: 17711995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity.
    Viollet B; Andreelli F; Jørgensen SB; Perrin C; Geloen A; Flamez D; Mu J; Lenzner C; Baud O; Bennoun M; Gomas E; Nicolas G; Wojtaszewski JF; Kahn A; Carling D; Schuit FC; Birnbaum MJ; Richter EA; Burcelin R; Vaulont S
    J Clin Invest; 2003 Jan; 111(1):91-8. PubMed ID: 12511592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AMPKα2 knockout enhances tumour inflammation through exacerbated liver injury and energy deprivation-associated AMPKα1 activation.
    Qiu S; Liu T; Piao C; Wang Y; Wang K; Zhou Y; Cai L; Zheng S; Lan F; Du J
    J Cell Mol Med; 2019 Mar; 23(3):1687-1697. PubMed ID: 30636376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
    Jørgensen SB; Treebak JT; Viollet B; Schjerling P; Vaulont S; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E331-9. PubMed ID: 16954334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AMPKα1 knockout enhances nociceptive behaviors and spinal glutamatergic synaptic activities via production of reactive oxygen species in the spinal dorsal horn.
    Maixner DW; Yan X; Hooks SB; Weng HR
    Neuroscience; 2016 Jun; 326():158-169. PubMed ID: 27058143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of AMP-Activated Protein Kinase α1 Deficiency on Tissue Injury following Unilateral Ureteral Obstruction.
    Mia S; Federico G; Feger M; Pakladok T; Meissner A; Voelkl J; Groene HJ; Alesutan I; Lang F
    PLoS One; 2015; 10(8):e0135235. PubMed ID: 26285014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metformin Exerts Beneficial Effects in Hemorrhagic Shock in An AMPKα1-Independent Manner.
    Kim P; Piraino G; O'Connor M; Hake PW; Wolfe V; Lahni P; Zingarelli B
    Shock; 2018 Mar; 49(3):277-287. PubMed ID: 28915221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation.
    Mia S; Castor T; Musculus K; Voelkl J; Alesutan I; Lang F
    Biochem Biophys Res Commun; 2016 Aug; 476(4):267-272. PubMed ID: 27230958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The adenosine monophosphate-activated protein kinase-vacuolar adenosine triphosphatase-pH axis: A key regulator of the profibrogenic phenotype of human hepatic stellate cells.
    Marrone G; De Chiara F; Böttcher K; Levi A; Dhar D; Longato L; Mazza G; Zhang Z; Marrali M; Fernández-Iglesias A; Hall A; Luong TV; Viollet B; Pinzani M; Rombouts K
    Hepatology; 2018 Sep; 68(3):1140-1153. PubMed ID: 29663481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration.
    Mounier R; Théret M; Arnold L; Cuvellier S; Bultot L; Göransson O; Sanz N; Ferry A; Sakamoto K; Foretz M; Viollet B; Chazaud B
    Cell Metab; 2013 Aug; 18(2):251-64. PubMed ID: 23931756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes.
    Voelkl J; Alesutan I; Primessnig U; Feger M; Mia S; Jungmann A; Castor T; Viereck R; Stöckigt F; Borst O; Gawaz M; Schrickel JW; Metzler B; Katus HA; Müller OJ; Pieske B; Heinzel FR; Lang F
    J Mol Cell Cardiol; 2016 Aug; 97():36-43. PubMed ID: 27106803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner.
    Niu Y; Wang T; Liu S; Yuan H; Li H; Fu L
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2372-2381. PubMed ID: 28688716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kidney-specific genetic deletion of both AMPK α-subunits causes salt and water wasting.
    Lazo-Fernández Y; Baile G; Meade P; Torcal P; Martínez L; Ibañez C; Bernal ML; Viollet B; Giménez I
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F352-F365. PubMed ID: 28179232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice.
    Zhang P; Hu X; Xu X; Fassett J; Zhu G; Viollet B; Xu W; Wiczer B; Bernlohr DA; Bache RJ; Chen Y
    Hypertension; 2008 Nov; 52(5):918-24. PubMed ID: 18838626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.
    Fentz J; Kjøbsted R; Kristensen CM; Hingst JR; Birk JB; Gudiksen A; Foretz M; Schjerling P; Viollet B; Pilegaard H; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2015 Dec; 309(11):E900-14. PubMed ID: 26419588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm.
    Miura S; Kai Y; Tadaishi M; Tokutake Y; Sakamoto K; Bruce CR; Febbraio MA; Kita K; Chohnan S; Ezaki O
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E213-29. PubMed ID: 23695215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145.
    Kohlstedt K; Trouvain C; Boettger T; Shi L; Fisslthaler B; Fleming I
    Circ Res; 2013 Apr; 112(8):1150-8. PubMed ID: 23476055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping diet-induced alternative polyadenylation of hypothalamic transcripts in the obese rat.
    Brutman JN; Zhou X; Zhang Y; Michal J; Stark B; Jiang Z; Davis JF
    Physiol Behav; 2018 May; 188():173-180. PubMed ID: 29391168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AMP-activated protein kinase α1 regulates cardiac gap junction protein connexin 43 and electrical remodeling following pressure overload.
    Alesutan I; Voelkl J; Stöckigt F; Mia S; Feger M; Primessnig U; Sopjani M; Munoz C; Borst O; Gawaz M; Pieske B; Metzler B; Heinzel F; Schrickel JW; Lang F
    Cell Physiol Biochem; 2015; 35(1):406-18. PubMed ID: 25591781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AMP-activated kinase α2 deficiency protects mice from denervation-induced skeletal muscle atrophy.
    Guo Y; Meng J; Tang Y; Wang T; Wei B; Feng R; Gong B; Wang H; Ji G; Lu Z
    Arch Biochem Biophys; 2016 Jun; 600():56-60. PubMed ID: 27136709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.