These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29691520)

  • 1. Flexible proton-responsive ligand-based Mn(i) complexes for CO
    Rawat KS; Pathak B
    Phys Chem Chem Phys; 2018 May; 20(18):12535-12542. PubMed ID: 29691520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study on ligand assisted vs. ligand participation mechanisms for CO
    Mandal SC; Rawat KS; Pathak B
    Phys Chem Chem Phys; 2019 Feb; 21(7):3932-3941. PubMed ID: 30702721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO
    Suna Y; Himeda Y; Fujita E; Muckerman JT; Ertem MZ
    ChemSusChem; 2017 Nov; 10(22):4535-4543. PubMed ID: 28985455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the preferential pathways of CO
    Mandal SC; Pathak B
    Dalton Trans; 2021 Jul; 50(27):9598-9609. PubMed ID: 34160489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand.
    Onishi N; Xu S; Manaka Y; Suna Y; Wang WH; Muckerman JT; Fujita E; Himeda Y
    Inorg Chem; 2015 Jun; 54(11):5114-23. PubMed ID: 25691331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral-at-Metal: Iridium(III) Tetrazole Complexes With Proton-Responsive P-OH Groups for CO
    Ocansey E; Darkwa J; Makhubela BCE
    Front Chem; 2020; 8():591353. PubMed ID: 33304883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into HCO
    Wonglakhon T; Surawatanawong P
    Dalton Trans; 2018 Dec; 47(47):17020-17031. PubMed ID: 30460951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Proton-Responsive Catalysts.
    Wang L; Kanega R; Kawanami H; Himeda Y
    Chem Rec; 2017 Nov; 17(11):1071-1094. PubMed ID: 28650571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely Controlling Ancillary Ligands to Improve Catalysis of Cp*Ir Complexes for CO
    Mo XF; Ge S; Yi PP; Chen G; Liu JH; Liu C; Yi XY; He P
    Inorg Chem; 2023 Jul; 62(28):11225-11232. PubMed ID: 37401905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.
    Zhang P; Ni SF; Dang L
    Chem Asian J; 2016 Sep; 11(18):2528-36. PubMed ID: 27500596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclopentadienone Diphosphine Ruthenium Complex: A Designed Catalyst for the Hydrogenation of Carbon Dioxide to Methanol.
    Tang Y; Pu M; Lei M
    J Org Chem; 2024 Feb; 89(4):2431-2439. PubMed ID: 38306607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H; Chen X; Yang X
    Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory-Based Extension of the Catalyst Scope in the Base-Catalyzed Hydrogenation of Ketones: RCOOH-Catalyzed Hydrogenation of Carbonyl Compounds with H
    Heshmat M; Privalov T
    Chemistry; 2017 Dec; 23(72):18193-18202. PubMed ID: 28981175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.