These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 29691629)
1. Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols. Davis R; Molloy S; Quigley B; Nikodinovic-Runic J; Solano F; O'Connor KE Appl Microbiol Biotechnol; 2018 Jun; 102(12):5121-5131. PubMed ID: 29691629 [TBL] [Abstract][Full Text] [Related]
2. Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. Molloy S; Nikodinovic-Runic J; Martin LB; Hartmann H; Solano F; Decker H; O'Connor KE Biotechnol Bioeng; 2013 Jul; 110(7):1849-57. PubMed ID: 23381872 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase. Coulombel L; Nolan LC; Nikodinovic J; Doyle EM; O'Connor KE Appl Microbiol Biotechnol; 2011 Mar; 89(6):1867-75. PubMed ID: 21057945 [TBL] [Abstract][Full Text] [Related]
4. Use of Pseudomonas mendocina, or recombinant Escherichia coli cells expressing toluene-4-monooxygenase, and a cell-free tyrosinase for the synthesis of 4-fluorocatechol from fluorobenzene. Nolan LC; O'Connor KE Biotechnol Lett; 2007 Jul; 29(7):1045-50. PubMed ID: 17426925 [TBL] [Abstract][Full Text] [Related]
5. Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols. Guazzaroni M; Crestini C; Saladino R Bioorg Med Chem; 2012 Jan; 20(1):157-66. PubMed ID: 22154294 [TBL] [Abstract][Full Text] [Related]
6. Rapid halogen substitution and dibenzodioxin formation during tyrosinase-catalyzed oxidation of 4-halocatechols. Stratford MR; Riley PA; Ramsden CA Chem Res Toxicol; 2011 Mar; 24(3):350-6. PubMed ID: 21306115 [TBL] [Abstract][Full Text] [Related]
7. Production of o-diphenols by immobilized mushroom tyrosinase. Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA J Biotechnol; 2009 Jan; 139(2):163-8. PubMed ID: 19047003 [TBL] [Abstract][Full Text] [Related]
8. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. Hernández-Romero D; Sanchez-Amat A; Solano F FEBS J; 2006 Jan; 273(2):257-70. PubMed ID: 16403014 [TBL] [Abstract][Full Text] [Related]
9. Polyphenol oxidase activity expression in Ralstonia solanacearum. Hernández-Romero D; Solano F; Sanchez-Amat A Appl Environ Microbiol; 2005 Nov; 71(11):6808-15. PubMed ID: 16269713 [TBL] [Abstract][Full Text] [Related]
10. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Ramsden CA; Riley PA Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803 [TBL] [Abstract][Full Text] [Related]
11. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680. Lee N; Kim EJ; Kim BG ACS Chem Biol; 2012 Oct; 7(10):1687-92. PubMed ID: 22769580 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic aspects of the tyrosinase oxidation of hydroquinone. Ramsden CA; Riley PA Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847 [TBL] [Abstract][Full Text] [Related]
13. The influence of catechol structure on the suicide-inactivation of tyrosinase. Ramsden CA; Stratford MR; Riley PA Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891 [TBL] [Abstract][Full Text] [Related]
14. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system. Yamazaki S; Itoh S J Am Chem Soc; 2003 Oct; 125(43):13034-5. PubMed ID: 14570470 [TBL] [Abstract][Full Text] [Related]
15. A substrate recycling assay for phenolic compounds using tyrosinase and NADH. Brown RS; Male KB; Luong JH Anal Biochem; 1994 Oct; 222(1):131-9. PubMed ID: 7856838 [TBL] [Abstract][Full Text] [Related]
17. The pro-enzyme C-terminal processing domain of Pholiota nameko tyrosinase is responsible for folding of the N-terminal catalytic domain. Moe LL; Maekawa S; Kawamura-Konishi Y Appl Microbiol Biotechnol; 2015 Jul; 99(13):5499-510. PubMed ID: 25904132 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Brooks SJ; Doyle EM; Hewage C; Malthouse JP; Duetz W; O' Connor KE Appl Microbiol Biotechnol; 2004 May; 64(4):486-92. PubMed ID: 14647990 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of diethylstilbestrol: identification of a catechol derived from dienestrol. Weidenfeld J; Carter P; Reinhold VN; Tanner SB; Engel LL Biomed Mass Spectrom; 1978 Oct; 5(10):587-90. PubMed ID: 106901 [TBL] [Abstract][Full Text] [Related]
20. Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase. Brooks SJ; Nikodinovic J; Martin L; Doyle EM; O'Sullivan T; Guiry PJ; Coulombel L; Li Z; O'Connor KE Biotechnol Lett; 2013 May; 35(5):779-83. PubMed ID: 23355036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]