BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29691732)

  • 21. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients.
    Roy JN; Barama A; Poirier C; Vinet B; Roger M
    Pharmacogenet Genomics; 2006 Sep; 16(9):659-65. PubMed ID: 16906020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of CYP3A5 polymorphism on the pharmacokinetics of a once-daily modified-release tacrolimus formulation and acute kidney injury in hematopoietic stem cell transplantation.
    Yamashita T; Fujishima N; Miura M; Niioka T; Abumiya M; Shinohara Y; Ubukawa K; Nara M; Fujishima M; Kameoka Y; Tagawa H; Hirokawa M; Takahashi N
    Cancer Chemother Pharmacol; 2016 Jul; 78(1):111-8. PubMed ID: 27217047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.
    Hu R; Barratt DT; Coller JK; Sallustio BC; Somogyi AA
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):320-326. PubMed ID: 29603629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of combinational CYP3A5 6986A>G polymorphism in graft liver and native intestine on the pharmacokinetics of tacrolimus in liver transplant patients: a meta-analysis.
    Buendia JA; Bramuglia G; Staatz CE
    Ther Drug Monit; 2014 Aug; 36(4):442-7. PubMed ID: 24378577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of cytochrome P450 3A5 polymorphism in graft livers on the frequency of acute cellular rejection in living-donor liver transplantation.
    Uesugi M; Kikuchi M; Shinke H; Omura T; Yonezawa A; Matsubara K; Fujimoto Y; Okamoto S; Kaido T; Uemoto S; Masuda S
    Pharmacogenet Genomics; 2014 Jul; 24(7):356-66. PubMed ID: 24911663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation.
    Benkali K; Rostaing L; Premaud A; Woillard JB; Saint-Marcoux F; Urien S; Kamar N; Marquet P; Rousseau A
    Clin Pharmacokinet; 2010 Oct; 49(10):683-92. PubMed ID: 20818834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CYP3A and ABCB1 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tacrolimus and its metabolites (M-I and M-III).
    Yoon SH; Cho JH; Kwon O; Choi JY; Park SH; Kim YL; Yoon YR; Won DI; Kim CD
    Transplantation; 2013 Mar; 95(6):828-34. PubMed ID: 23364483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients.
    Barry A; Levine M
    Ther Drug Monit; 2010 Dec; 32(6):708-14. PubMed ID: 20864901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism--a prospective, randomized, controlled study.
    Chen SY; Li JL; Meng FH; Wang XD; Liu T; Li J; Liu LS; Fu Q; Huang M; Wang CX
    Clin Transplant; 2013; 27(3):E272-81. PubMed ID: 23432535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.
    Hesselink DA; van Schaik RH; van der Heiden IP; van der Werf M; Gregoor PJ; Lindemans J; Weimar W; van Gelder T
    Clin Pharmacol Ther; 2003 Sep; 74(3):245-54. PubMed ID: 12966368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Tacrolimus Exposure by CYP3A5 Genotype and Exposure of Co-Administered Everolimus in Japanese Renal Transplant Recipients.
    Kagaya H; Niioka T; Saito M; Inoue T; Numakura K; Yamamoto R; Akamine Y; Habuchi T; Satoh S; Miura M
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29547545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation.
    Zhang X; Liu ZH; Zheng JM; Chen ZH; Tang Z; Chen JS; Li LS
    Clin Transplant; 2005 Oct; 19(5):638-43. PubMed ID: 16146556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Which Genetic Determinants Should be Considered for Tacrolimus Dose Optimization in Kidney Transplantation? A Combined Analysis of Genes Affecting the CYP3A Locus.
    Bruckmueller H; Werk AN; Renders L; Feldkamp T; Tepel M; Borst C; Caliebe A; Kunzendorf U; Cascorbi I
    Ther Drug Monit; 2015 Jun; 37(3):288-95. PubMed ID: 25271728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of donor liver CYP3A4*20 loss-of-function genotype on tacrolimus pharmacokinetics in transplanted patients.
    Gómez-Bravo MA; Apellaniz-Ruiz M; Salcedo M; Fondevila C; Suarez F; Castellote J; Rufian S; Pons JA; Bilbao I; Alamo JM; Millán O; Brunet M; Rodríguez-Antona C
    Pharmacogenet Genomics; 2018 Feb; 28(2):41-48. PubMed ID: 29256966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients.
    Press RR; Ploeger BA; den Hartigh J; van der Straaten T; van Pelt J; Danhof M; de Fijter JW; Guchelaar HJ
    Ther Drug Monit; 2009 Apr; 31(2):187-97. PubMed ID: 19258929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea.
    Jun KR; Lee W; Jang MS; Chun S; Song GW; Park KT; Lee SG; Han DJ; Kang C; Cho DY; Kim JQ; Min WK
    Transplantation; 2009 Apr; 87(8):1225-31. PubMed ID: 19384171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage post-renal transplantation.
    Niioka T; Kagaya H; Saito M; Inoue T; Numakura K; Habuchi T; Satoh S; Miura M
    Int J Mol Sci; 2015 Jan; 16(1):1840-54. PubMed ID: 25594874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CYP3A5 Genotype and Time to Reach Tacrolimus Therapeutic Levels in Renal Transplant Children.
    Alvarez-Elías AC; García-Roca P; Velásquez-Jones L; Valverde S; Varela-Fascinetto G; Medeiros M
    Transplant Proc; 2016 Mar; 48(2):631-4. PubMed ID: 27110018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of CYP3A5 polymorphism on the pharmacokinetics of tacrolimus and acute rejection in renal transplant recipients: experience at a single centre.
    Cheng Y; Li H; Meng Y; Liu H; Yang L; Xu T; Yu J; Zhao N; Liu Y
    Int J Clin Pract Suppl; 2015 May; (183):16-22. PubMed ID: 26177012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.