These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29691815)

  • 1. Natural Origin Materials for Osteochondral Tissue Engineering.
    Bonani W; Singhatanadgige W; Pornanong A; Motta A
    Adv Exp Med Biol; 2018; 1058():3-30. PubMed ID: 29691815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioceramics for Osteochondral Tissue Engineering and Regeneration.
    Pina S; Rebelo R; Correlo VM; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1058():53-75. PubMed ID: 29691817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering.
    Rao SH; Harini B; Shadamarshan RPK; Balagangadharan K; Selvamurugan N
    Int J Biol Macromol; 2018 Apr; 110():88-96. PubMed ID: 28917940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro/Nano Scaffolds for Osteochondral Tissue Engineering.
    Martins A; Reis RL; Neves NM
    Adv Exp Med Biol; 2018; 1058():125-139. PubMed ID: 29691820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Response of Osteoblastic and Chondrogenic Cells to Graphene-Containing PCL/Bioactive Glass Bilayered Scaffolds for Osteochondral Tissue Engineering Applications.
    Deliormanlı AM; Atmaca H
    Appl Biochem Biotechnol; 2018 Dec; 186(4):972-989. PubMed ID: 29797300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.
    Yao Q; Nooeaid P; Detsch R; Roether JA; Dong Y; Goudouri OM; Schubert DW; Boccaccini AR
    J Biomed Mater Res A; 2014 Dec; 102(12):4510-8. PubMed ID: 24677705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration.
    Ribeiro VP; Pina S; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1058():305-325. PubMed ID: 29691828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering.
    Fu L; Zhang L; Zhang X; Chen L; Cai Q; Yang X
    Biomed Mater; 2021 Feb; 16(2):022006. PubMed ID: 33440367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells.
    B Malafaya PP; Pedro AJ; Peterbauer A; Gabriel C; Redl H; Reis RL
    J Mater Sci Mater Med; 2005 Dec; 16(12):1077-85. PubMed ID: 16362204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Polymeric Scaffolds for Tissue Engineering Applications.
    Ebhodaghe SO
    J Biomater Sci Polym Ed; 2021 Nov; 32(16):2144-2194. PubMed ID: 34328068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Use of Electrospinning Technique on Osteochondral Tissue Engineering.
    Casanova MR; Reis RL; Martins A; Neves NM
    Adv Exp Med Biol; 2018; 1058():247-263. PubMed ID: 29691825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic approaches for tissue engineering.
    Reddy R; Reddy N
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1667-1685. PubMed ID: 29998794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofibers and Microfibers for Osteochondral Tissue Engineering.
    Ortega Z; Alemán ME; Donate R
    Adv Exp Med Biol; 2018; 1058():97-123. PubMed ID: 29691819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering.
    Li J; Baker BA; Mou X; Ren N; Qiu J; Boughton RI; Liu H
    Adv Healthc Mater; 2014 Apr; 3(4):469-84. PubMed ID: 24339420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering.
    Teixeira S; Fernandes H; Leusink A; van Blitterswijk C; Ferraz MP; Monteiro FJ; de Boer J
    J Biomed Mater Res A; 2010 May; 93(2):567-75. PubMed ID: 19591232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering.
    Wójtowicz J; Leszczyńska J; Chróścicka A; Slósarczyk A; Paszkiewicz Z; Zima A; Rożniatowski K; Jeleń P; Lewandowska-Szumieł M
    Biomed Mater Eng; 2014; 24(3):1609-23. PubMed ID: 24840199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration.
    Puertas-Bartolomé M; Benito-Garzón L; Olmeda-Lozano M
    Adv Exp Med Biol; 2018; 1058():327-355. PubMed ID: 29691829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds.
    Keeney M; Pandit A
    Tissue Eng Part B Rev; 2009 Mar; 15(1):55-73. PubMed ID: 19207035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies.
    Alghazali KM; Nima ZA; Hamzah RN; Dhar MS; Anderson DE; Biris AS
    Drug Metab Rev; 2015; 47(4):431-54. PubMed ID: 26651522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.