These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 29691817)

  • 21. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration.
    Khan AF; Saleem M; Afzal A; Ali A; Khan A; Khan AR
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():245-52. PubMed ID: 24411375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques.
    Schumann D; Ekaputra AK; Lam CX; Hutmacher DW
    Methods Mol Med; 2007; 140():101-24. PubMed ID: 18085205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years.
    Philippart A; Boccaccini AR; Fleck C; Schubert DW; Roether JA
    Expert Rev Med Devices; 2015 Jan; 12(1):93-111. PubMed ID: 25331196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration.
    Puertas-Bartolomé M; Benito-Garzón L; Olmeda-Lozano M
    Adv Exp Med Biol; 2018; 1058():327-355. PubMed ID: 29691829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zwitterionic ceramics for biomedical applications.
    Izquierdo-Barba I; Colilla M; Vallet-Regí M
    Acta Biomater; 2016 Aug; 40():201-211. PubMed ID: 26911884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sol-Gel Technologies to Obtain Advanced Bioceramics for Dental Therapeutics.
    Song X; Segura-Egea JJ; Díaz-Cuenca A
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue Engineering Strategies for Osteochondral Repair.
    Maia FR; Carvalho MR; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1059():353-371. PubMed ID: 29736582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnesium Phosphate Bioceramics for Bone Tissue Engineering.
    Bavya Devi K; Lalzawmliana V; Saidivya M; Kumar V; Roy M; Kumar Nandi S
    Chem Rec; 2022 Nov; 22(11):e202200136. PubMed ID: 35866502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioceramics for Clinical Application in Regenerative Dentistry.
    Ana ID; Satria GAP; Dewi AH; Ardhani R
    Adv Exp Med Biol; 2018; 1077():309-316. PubMed ID: 30357695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation.
    Goel A; Kapoor S; Rajagopal RR; Pascual MJ; Kim HW; Ferreira JM
    Acta Biomater; 2012 Jan; 8(1):361-72. PubMed ID: 21925626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioceramics in ophthalmology.
    Baino F; Vitale-Brovarone C
    Acta Biomater; 2014 Aug; 10(8):3372-97. PubMed ID: 24879312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Biomaterials for the Treatment of Bone Defects.
    Zhang LY; Bi Q; Zhao C; Chen JY; Cai MH; Chen XY
    Organogenesis; 2020 Oct; 16(4):113-125. PubMed ID: 32799735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine.
    Farmani AR; Salmeh MA; Golkar Z; Moeinzadeh A; Ghiasi FF; Amirabad SZ; Shoormeij MH; Mahdavinezhad F; Momeni S; Moradbeygi F; Ai J; Hardy JG; Mostafaei A
    J Funct Biomater; 2022 Sep; 13(4):. PubMed ID: 36278631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The future of bioactive ceramics.
    Hench LL
    J Mater Sci Mater Med; 2015 Feb; 26(2):86. PubMed ID: 25644100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium Orthophosphate-Based Bioceramics.
    Dorozhkin SV
    Materials (Basel); 2013 Sep; 6(9):3840-3942. PubMed ID: 28788309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites.
    Zhang F; Chang J; Lu J; Lin K; Ning C
    Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progenitor and stem cells for bone and cartilage regeneration.
    El Tamer MK; Reis RL
    J Tissue Eng Regen Med; 2009 Jul; 3(5):327-37. PubMed ID: 19418440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.
    Zhou C; Deng C; Chen X; Zhao X; Chen Y; Fan Y; Zhang X
    J Mech Behav Biomed Mater; 2015 Aug; 48():1-11. PubMed ID: 25910818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research.
    Ebrahimi M; Botelho MG; Dorozhkin SV
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1293-1312. PubMed ID: 27987685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.