These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29692683)
1. Inorganic Polyphosphate, Exopolyphosphatase, and Rivero M; Torres-Paris C; Muñoz R; Cabrera R; Navarro CA; Jerez CA Archaea; 2018; 2018():5251061. PubMed ID: 29692683 [TBL] [Abstract][Full Text] [Related]
2. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. McCarthy S; Ai C; Wheaton G; Tevatia R; Eckrich V; Kelly R; Blum P J Bacteriol; 2014 Oct; 196(20):3562-70. PubMed ID: 25092032 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Wheaton GH; Mukherjee A; Kelly RM Appl Environ Microbiol; 2016 Aug; 82(15):4613-4627. PubMed ID: 27208114 [TBL] [Abstract][Full Text] [Related]
4. Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution. Ai C; McCarthy S; Eckrich V; Rudrappa D; Qiu G; Blum P J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1455-65. PubMed ID: 27520549 [TBL] [Abstract][Full Text] [Related]
5. Epimerase (Msed_0639) and mutase (Msed_0638 and Msed_2055) convert (S)-methylmalonyl-coenzyme A (CoA) to succinyl-CoA in the Metallosphaera sedula 3-hydroxypropionate/4-hydroxybutyrate cycle. Han Y; Hawkins AS; Adams MW; Kelly RM Appl Environ Microbiol; 2012 Sep; 78(17):6194-202. PubMed ID: 22752162 [TBL] [Abstract][Full Text] [Related]
6. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli. Grillo-Puertas M; Schurig-Briccio LA; Rodríguez-Montelongo L; Rintoul MR; Rapisarda VA BMC Microbiol; 2014 Mar; 14():72. PubMed ID: 24645672 [TBL] [Abstract][Full Text] [Related]
7. Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea. Hawkins AS; Han Y; Bennett RK; Adams MW; Kelly RM J Biol Chem; 2013 Feb; 288(6):4012-22. PubMed ID: 23258541 [TBL] [Abstract][Full Text] [Related]
8. Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. Ai C; McCarthy S; Liang Y; Rudrappa D; Qiu G; Blum P J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1613-1625. PubMed ID: 28770421 [TBL] [Abstract][Full Text] [Related]
10. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Remonsellez F; Orell A; Jerez CA Microbiology (Reading); 2006 Jan; 152(Pt 1):59-66. PubMed ID: 16385115 [TBL] [Abstract][Full Text] [Related]
11. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach. Soto DF; Recalde A; Orell A; Albers SV; Paradela A; Navarro CA; Jerez CA J Proteomics; 2019 Jan; 191():143-152. PubMed ID: 29501848 [TBL] [Abstract][Full Text] [Related]
12. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Auernik KS; Kelly RM Appl Environ Microbiol; 2010 Feb; 76(3):931-5. PubMed ID: 20008169 [TBL] [Abstract][Full Text] [Related]
13. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation. Ai C; Yan Z; Chai H; Gu T; Wang J; Chai L; Qiu G; Zeng W J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1113-1127. PubMed ID: 31165968 [TBL] [Abstract][Full Text] [Related]
14. The exopolyphosphatase gene from sulfolobus solfataricus: characterization of the first gene found to be involved in polyphosphate metabolism in archaea. Cardona ST; Chávez FP; Jerez CA Appl Environ Microbiol; 2002 Oct; 68(10):4812-9. PubMed ID: 12324325 [TBL] [Abstract][Full Text] [Related]
15. Conversion of 4-hydroxybutyrate to acetyl coenzyme A and its anapleurosis in the Metallosphaera sedula 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway. Hawkins AB; Adams MW; Kelly RM Appl Environ Microbiol; 2014 Apr; 80(8):2536-45. PubMed ID: 24532060 [TBL] [Abstract][Full Text] [Related]
16. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula. Auernik KS; Kelly RM Appl Environ Microbiol; 2010 Apr; 76(8):2668-72. PubMed ID: 20190092 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure and biochemical properties of msed_0281, the citrate synthase from Metallosphaera sedula. Lee SH; Kim KJ Biochem Biophys Res Commun; 2019 Feb; 509(3):722-727. PubMed ID: 30611567 [TBL] [Abstract][Full Text] [Related]
18. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Auernik KS; Kelly RM Appl Environ Microbiol; 2008 Dec; 74(24):7723-32. PubMed ID: 18931292 [TBL] [Abstract][Full Text] [Related]
19. Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. Maezato Y; Johnson T; McCarthy S; Dana K; Blum P J Bacteriol; 2012 Dec; 194(24):6856-63. PubMed ID: 23065978 [TBL] [Abstract][Full Text] [Related]
20. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO Lian H; Zeldes BM; Lipscomb GL; Hawkins AB; Han Y; Loder AJ; Nishiyama D; Adams MW; Kelly RM Biotechnol Bioeng; 2016 Dec; 113(12):2652-2660. PubMed ID: 27315782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]