These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29692699)

  • 1. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.
    Alibeji NA; Molazadeh V; Dicianno BE; Sharma N
    Front Neurosci; 2018; 12():159. PubMed ID: 29692699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis.
    Alibeji NA; Kirsch NA; Sharma N
    Front Bioeng Biotechnol; 2015; 3():203. PubMed ID: 26734606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis.
    Kirsch NA; Bao X; Alibeji NA; Dicianno BE; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):224-232. PubMed ID: 28952946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Person-Specific Muscle Fatigue Characteristics to Optimally Allocate Control in a Hybrid Exoskeleton - Preliminary Results.
    Bao X; Molazadeh V; Dodson A; Dicianno BE; Sharma N
    IEEE Trans Med Robot Bionics; 2020 May; 2(2):226-235. PubMed ID: 32661511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-optimally Solving Actuator Redundancy in a Hybrid Neuroprosthetic System with a Multi-layer Neural Network Structure.
    Bao X; Mao ZH; Munro P; Sun Z; Sharma N
    Int J Intell Robot Appl; 2019 Sep; 3(3):298-313. PubMed ID: 33283042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
    Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ
    J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Iterative Learning Controller for a Switched Cooperative Allocation Strategy during Sit-to-Stand Tasks with a Hybrid Exoskeleton.
    Molazadeh V; Zhang Q; Bao X; Sharma N
    IEEE Trans Control Syst Technol; 2022 May; 30(3):1021-1036. PubMed ID: 36249864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tube-based Model Predictive Control Method to Regulate a Knee Joint with Functional Electrical Stimulation and Electric Motor Assist.
    Bao X; Sheng Z; Dicianno BE; Sharma N
    IEEE Trans Control Syst Technol; 2021 Sep; 29(5):2180-2191. PubMed ID: 35309163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing stance phase propulsion during level walking by combining FES with a powered exoskeleton for persons with paraplegia.
    Ha KH; Quintero HA; Farris RJ; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():344-7. PubMed ID: 23365900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia.
    Ha KH; Murray SA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):455-66. PubMed ID: 25915961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning.
    Molazadeh V; Zhang Q; Bao X; Dicianno BE; Sharma N
    Front Robot AI; 2021; 8():711388. PubMed ID: 34805288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid FES-exoskeleton control: Using MPC to distribute actuation for elbow and wrist movements.
    Dunkelberger N; Berning J; Schearer EM; O'Malley MK
    Front Neurorobot; 2023; 17():1127783. PubMed ID: 37091069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics.
    Kirsch N; Alibeji N; Fisher L; Gregory C; Sharma N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2557-60. PubMed ID: 25570512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FES Coupled With A Powered Exoskeleton For Cooperative Muscle Contribution In Persons With Paraplegia.
    Murray SA; Farris RJ; Golfarb M; Hartigan C; Kandilakis C; Truex D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2788-2792. PubMed ID: 30440980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation.
    Alibeji N; Kirsch N; Dicianno BE; Sharma N
    IEEE ASME Trans Mechatron; 2017 Aug; 22(4):1755-1764. PubMed ID: 29335666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.
    Zhang D; Ren Y; Gui K; Jia J; Xu W
    Front Neurosci; 2017; 11():725. PubMed ID: 29311798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Joint Friction Compensation on a "Muscle-First" Motor-Assisted Hybrid Neuroprosthesis.
    Reyes RD; Kobetic R; Nandor M; Makowski N; Audu M; Quinn R; Triolo R
    Front Neurorobot; 2020; 14():588950. PubMed ID: 33362502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stimulation-driven exoskeleton for walking after paraplegia.
    Chang SR; Nandor MJ; Lu Li ; Foglyano KM; Schnellenberger JR; Kobetic R; Quinn RD; Triolo RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6369-6372. PubMed ID: 28269706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.