These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29692702)

  • 21. Neuromorphic LIF Row-by-Row Multiconvolution Processor for FPGA.
    Tapiador-Morales R; Linares-Barranco A; Jimenez-Fernandez A; Jimenez-Moreno G
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):159-169. PubMed ID: 30418884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation.
    Deng B; Fan Y; Wang J; Yang S
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1320-1331. PubMed ID: 34699367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
    Schmitt FJ; Rostami V; Nawrot MP
    Front Neuroinform; 2023; 17():941696. PubMed ID: 36844916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.
    Pani D; Meloni P; Tuveri G; Palumbo F; Massobrio P; Raffo L
    Front Neurosci; 2017; 11():90. PubMed ID: 28293163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.
    Srinivasa N; Zhang D; Grigorian B
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):585-608. PubMed ID: 24807453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity.
    Bill J; Schuch K; Brüderle D; Schemmel J; Maass W; Meier K
    Front Comput Neurosci; 2010; 4():129. PubMed ID: 21031027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling.
    Hoang RV; Tanna D; Jayet Bray LC; Dascalu SM; Harris FC
    Front Neuroinform; 2013; 7():19. PubMed ID: 24106475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
    Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y
    Front Neurosci; 2018; 12():717. PubMed ID: 30524218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ANNarchy: a code generation approach to neural simulations on parallel hardware.
    Vitay J; Dinkelbach HÜ; Hamker FH
    Front Neuroinform; 2015; 9():19. PubMed ID: 26283957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.
    Zhang Z; Ma C; Zhu R
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator.
    Crone JC; Vindiola MM; Yu AB; Boothe DL; Beeman D; Oie KS; Franaszczuk PJ
    Front Neuroinform; 2019; 13():69. PubMed ID: 31803040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks.
    Rostro-Gonzalez H; Cessac B; Girau B; Torres-Huitzil C
    J Physiol Paris; 2011; 105(1-3):91-7. PubMed ID: 21964248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks.
    Kim Y; Li Y; Moitra A; Yin R; Panda P
    Front Neurosci; 2023; 17():1230002. PubMed ID: 37583415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Cost Adaptive Exponential Integrate-and-Fire Neuron Using Stochastic Computing.
    Xiao S; Liu W; Guo Y; Yu Z
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):942-950. PubMed ID: 32746338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.