BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 29693296)

  • 1. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of structural elements in a class-I cyclic di-GMP riboswitch to elucidate its regulatory mechanism.
    Inuzuka S; Nishimura K; Kakizawa H; Fujita Y; Furuta H; Matsumura S; Ikawa Y
    J Biochem; 2016 Sep; 160(3):153-62. PubMed ID: 27033943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch.
    Fujita Y; Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2012 Feb; 113(2):141-5. PubMed ID: 22074990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
    Smith KD; Shanahan CA; Moore EL; Simon AC; Strobel SA
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7757-62. PubMed ID: 21518891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective binding of 2'-F-c-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from Clostridium tetani and Clostridium botulinum respectively.
    Luo Y; Zhou J; Wang J; Dayie TK; Sintim HO
    Mol Biosyst; 2013 Jun; 9(6):1535-9. PubMed ID: 23559271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding.
    Li C; Zhao X; Xie P; Hu J; Bi H
    J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer.
    Kellenberger CA; Sales-Lee J; Pan Y; Gassaway MM; Herr AE; Hammond MC
    RNA Biol; 2015; 12(11):1189-97. PubMed ID: 26114964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential analogue binding by two classes of c-di-GMP riboswitches.
    Shanahan CA; Gaffney BL; Jones RA; Strobel SA
    J Am Chem Soc; 2011 Oct; 133(39):15578-92. PubMed ID: 21838307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability.
    Pursley BR; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.
    Inuzuka S; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2016 Aug; 122(2):183-7. PubMed ID: 26968125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches.
    Keller H; Weickhmann AK; Bock T; Wöhnert J
    RNA; 2018 Oct; 24(10):1390-1402. PubMed ID: 30006500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer.
    Smith KD; Lipchock SV; Strobel SA
    Biochemistry; 2012 Jan; 51(1):425-32. PubMed ID: 22148472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding.
    Wood S; Ferré-D'Amaré AR; Rueda D
    ACS Chem Biol; 2012 May; 7(5):920-7. PubMed ID: 22380737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of ligand binding by a c-di-GMP riboswitch.
    Smith KD; Lipchock SV; Ames TD; Wang J; Breaker RR; Strobel SA
    Nat Struct Mol Biol; 2009 Dec; 16(12):1218-23. PubMed ID: 19898477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-acting riboswitch control of translation initiation and mRNA decay.
    Caron MP; Bastet L; Lussier A; Simoneau-Roy M; Massé E; Lafontaine DA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3444-53. PubMed ID: 23169642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.