BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29693398)

  • 21. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis.
    Luo J; Tang S; Peng X; Yan X; Zeng X; Li J; Li X; Wu G
    PLoS One; 2015; 10(10):e0138974. PubMed ID: 26448643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive proteomic analysis of arsenic induced toxicity reveals the mechanism of multilevel coordination of efficient defense and energy metabolism in two Brassica napus cultivars.
    Farooq MA; Hong Z; Islam F; Noor Y; Hannan F; Zhang Y; Ayyaz A; Mwamba TM; Zhou W; Song W
    Ecotoxicol Environ Saf; 2021 Jan; 208():111744. PubMed ID: 33396070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T
    Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosystem II functionality and antioxidant system changes during leaf rolling in post-stress emerging Ctenanthe setosa exposed to drought.
    Terzi R; Saruhan N; Sağlam A; Nar H; Kadioğlu A
    Acta Biol Hung; 2009 Dec; 60(4):417-31. PubMed ID: 20015833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global gene expression responses to waterlogging in leaves of rape seedlings.
    Lee YH; Kim KS; Jang YS; Hwang JH; Lee DH; Choi IH
    Plant Cell Rep; 2014 Feb; 33(2):289-99. PubMed ID: 24384821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic analysis of a plastid gene encoding RPS4 mutant in Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Tang X; Shi F; Wang Y; Huang S; Zhao Y; Feng H
    Funct Integr Genomics; 2022 Feb; 22(1):113-130. PubMed ID: 34881421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Proteomic Analysis Reveals That Chlorophyll Metabolism Contributes to Leaf Color Changes in Wucai ( Brassica campestris L.) Responding to Cold Acclimation.
    Xie S; Nie L; Zheng Y; Wang J; Zhao M; Zhu S; Hou J; Chen G; Wang C; Yuan L
    J Proteome Res; 2019 Jun; 18(6):2478-2492. PubMed ID: 31038978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.
    Zhang GH; Xu Q; Zhu XD; Qian Q; Xue HW
    Plant Cell; 2009 Mar; 21(3):719-35. PubMed ID: 19304938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus.
    Ali B; Gill RA; Yang S; Gill MB; Ali S; Rafiq MT; Zhou W
    Ecotoxicol Environ Saf; 2014 Dec; 110():197-207. PubMed ID: 25255479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density.
    Wei S; Wang X; Jiang D; Dong S
    BMC Plant Biol; 2018 Dec; 18(1):378. PubMed ID: 30594144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus.
    Megha S; Basu U; Joshi RK; Kav NNV
    Plant Physiol Biochem; 2018 Nov; 132():1-17. PubMed ID: 30170322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.
    Yıldız M; Terzi H
    Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in
    Yang Y; Liu Z; Zhang T; Zhou G; Duan Z; Li B; Dou S; Liang X; Tu J; Shen J; Yi B; Fu T; Dai C; Ma C
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29865276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Proteomics Reveals that Phosphorylation of β Carbonic Anhydrase 1 Might be Important for Adaptation to Drought Stress in Brassica napus.
    Wang L; Jin X; Li Q; Wang X; Li Z; Wu X
    Sci Rep; 2016 Dec; 6():39024. PubMed ID: 27966654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach.
    Wang Y; Chen W; Chu P; Wan S; Yang M; Wang M; Guan R
    BMC Plant Biol; 2016 Aug; 16(1):178. PubMed ID: 27538713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus.
    Wang Y; He Y; Yang M; He J; Xu P; Shao M; Chu P; Guan R
    Sci Rep; 2016 Aug; 6():31419. PubMed ID: 27506952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.
    Dahal K; Kane K; Gadapati W; Webb E; Savitch LV; Singh J; Sharma P; Sarhan F; Longstaffe FJ; Grodzinski B; Hüner NP
    Physiol Plant; 2012 Feb; 144(2):169-88. PubMed ID: 21883254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iTRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice.
    Xiong Q; Zhong L; Shen T; Cao C; He H; Chen X
    BMC Genomics; 2019 Aug; 20(1):681. PubMed ID: 31462233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage.
    Feigl G; Kumar D; Lehotai N; Pető A; Molnár Á; Rácz É; Ördög A; Erdei L; Kolbert Z; Laskay G
    Acta Biol Hung; 2015 Jun; 66(2):205-21. PubMed ID: 26081276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brassica evolution of essential BnaFtsH1 genes involved in the PSII repair cycle and loss of FtsH5.
    Xu K; Song J; Wu Y; Zhuo C; Wen J; Yi B; Ma C; Shen J; Fu T; Tu J
    Plant Sci; 2022 Feb; 315():111128. PubMed ID: 35067298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.