These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29693400)

  • 21. Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO.
    Giuli G; Trapananti A; Mueller F; Bresser D; d'Acapito F; Passerini S
    Inorg Chem; 2015 Oct; 54(19):9393-400. PubMed ID: 26375476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.
    Schimpf AM; Thakkar N; Gunthardt CE; Masiello DJ; Gamelin DR
    ACS Nano; 2014 Jan; 8(1):1065-72. PubMed ID: 24359559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon Resonance in Photoabsorption of Colloidal Highly Doped ZnO Nanocrystals.
    Ipatov AN; Gerchikov LG; Guet C
    Nanoscale Res Lett; 2018 Sep; 13(1):297. PubMed ID: 30251076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potentiometric Measurements of Semiconductor Nanocrystal Redox Potentials.
    Carroll GM; Brozek CK; Hartstein KH; Tsui EY; Gamelin DR
    J Am Chem Soc; 2016 Apr; 138(13):4310-3. PubMed ID: 26978480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals.
    Saha M; Ghosh S; Ashok VD; De SK
    Phys Chem Chem Phys; 2015 Jun; 17(24):16067-79. PubMed ID: 26029747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-doped colloidal semiconductor nanocrystals with intraband transitions in steady state.
    Kim J; Choi D; Jeong KS
    Chem Commun (Camb); 2018 Jul; 54(61):8435-8445. PubMed ID: 29972153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly transparent supercapacitors based on ZnO/MnO
    Borysiewicz MA; Ekielski M; OgorzaƂek Z; Wzorek M; Kaczmarski J; Wojciechowski T
    Nanoscale; 2017 Jun; 9(22):7577-7587. PubMed ID: 28537626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper-Coupled Electron Transfer in Colloidal Plasmonic Copper-Sulfide Nanocrystals Probed by in Situ Spectroelectrochemistry.
    Hartstein KH; Brozek CK; Hinterding SOM; Gamelin DR
    J Am Chem Soc; 2018 Mar; 140(9):3434-3442. PubMed ID: 29462551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: size dependence and role of the hole quencher.
    Schimpf AM; Gunthardt CE; Rinehart JD; Mayer JM; Gamelin DR
    J Am Chem Soc; 2013 Nov; 135(44):16569-77. PubMed ID: 24050304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.
    Zeng D; Gong P; Chen Y; Zhang Q; Xie Q; Peng DL
    Nanoscale; 2016 Jun; 8(22):11602-10. PubMed ID: 27216552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cation Effects on the Reduction of Colloidal ZnO Nanocrystals.
    Valdez CN; Delley MF; Mayer JM
    J Am Chem Soc; 2018 Jul; 140(28):8924-8933. PubMed ID: 29920088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photochemical electronic doping of colloidal CdSe nanocrystals.
    Rinehart JD; Schimpf AM; Weaver AL; Cohn AW; Gamelin DR
    J Am Chem Soc; 2013 Dec; 135(50):18782-5. PubMed ID: 24289732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge-controlled magnetism in colloidal doped semiconductor nanocrystals.
    Ochsenbein ST; Feng Y; Whitaker KM; Badaeva E; Liu WK; Li X; Gamelin DR
    Nat Nanotechnol; 2009 Oct; 4(10):681-7. PubMed ID: 19809461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sub-bandgap trap sites for high-density photochemical electron storage in colloidal SrTiO
    Abdullah M; Nelson RJ; Kittilstved KR
    Chem Commun (Camb); 2022 Oct; 58(84):11835-11838. PubMed ID: 36193718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetoplasmon Resonances in Semiconductor Nanocrystals: Potential for a New Information Technology Platform.
    Yin P; Radovanovic PV
    ChemSusChem; 2020 Sep; 13(18):4885-4893. PubMed ID: 32681689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supercapacitors of nanocrystalline metal-organic frameworks.
    Choi KM; Jeong HM; Park JH; Zhang YB; Kang JK; Yaghi OM
    ACS Nano; 2014 Jul; 8(7):7451-7. PubMed ID: 24999543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities.
    Lu YH; Lin WH; Yang CY; Chiu YH; Pu YC; Lee MH; Tseng YC; Hsu YJ
    Nanoscale; 2014 Aug; 6(15):8796-803. PubMed ID: 24954742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling the Mechanism of Excitonic Splitting in In
    Yin P; Hegde M; Tan Y; Chen S; Garnet N; Radovanovic PV
    ACS Nano; 2018 Nov; 12(11):11211-11218. PubMed ID: 30335948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping.
    Zheng X; Sun Y; Yan X; Sun X; Zhang G; Zhang Q; Jiang Y; Gao W; Zhang Y
    J Colloid Interface Sci; 2016 Dec; 484():155-161. PubMed ID: 27610470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals.
    Diroll BT; Guo P; Chang RP; Schaller RD
    ACS Nano; 2016 Nov; 10(11):10099-10105. PubMed ID: 27754640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.