BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 29693407)

  • 1. Causal Methods for Observational Research: A Primer.
    Almasi-Hashiani A; Nedjat S; Mansournia MA
    Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted learning in real-world comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Stat Med; 2014 Jun; 33(14):2480-520. PubMed ID: 24535915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causal models adjusting for time-varying confounding-a systematic review of the literature.
    Clare PJ; Dobbins TA; Mattick RP
    Int J Epidemiol; 2019 Feb; 48(1):254-265. PubMed ID: 30358847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
    Schmidt AF; Klungel OH; Groenwold RH;
    Epidemiology; 2016 Jan; 27(1):133-42. PubMed ID: 26436519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxed covariate overlap and margin-based causal effect estimation.
    Ghosh D
    Stat Med; 2018 Dec; 37(28):4252-4265. PubMed ID: 30168168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial.
    Smith MJ; Mansournia MA; Maringe C; Zivich PN; Cole SR; Leyrat C; Belot A; Rachet B; Luque-Fernandez MA
    Stat Med; 2022 Jan; 41(2):407-432. PubMed ID: 34713468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.
    Balzer LB; Zheng W; van der Laan MJ; Petersen ML
    Stat Methods Med Res; 2019 Jun; 28(6):1761-1780. PubMed ID: 29921160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners.
    Desai RJ; Franklin JM
    BMJ; 2019 Oct; 367():l5657. PubMed ID: 31645336
    [No Abstract]   [Full Text] [Related]  

  • 12. Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals.
    Almirall D; Griffin BA; McCaffrey DF; Ramchand R; Yuen RA; Murphy SA
    Stat Med; 2014 Sep; 33(20):3466-87. PubMed ID: 23873437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bagged one-to-one matching for efficient and robust treatment effect estimation.
    Samuels LR; Greevy RA
    Stat Med; 2018 Dec; 37(29):4353-4373. PubMed ID: 30101483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations and Misinterpretations of E-Values for Sensitivity Analyses of Observational Studies.
    Ioannidis JPA; Tan YJ; Blum MR
    Ann Intern Med; 2019 Jan; 170(2):108-111. PubMed ID: 30597486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AIPW: An R Package for Augmented Inverse Probability-Weighted Estimation of Average Causal Effects.
    Zhong Y; Kennedy EH; Bodnar LM; Naimi AI
    Am J Epidemiol; 2021 Dec; 190(12):2690-2699. PubMed ID: 34268567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating long-term treatment effects in observational data: A comparison of the performance of different methods under real-world uncertainty.
    Newsome SJ; Keogh RH; Daniel RM
    Stat Med; 2018 Jul; 37(15):2367-2390. PubMed ID: 29671915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.
    Austin PC; Stuart EA
    Stat Med; 2015 Dec; 34(28):3661-79. PubMed ID: 26238958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted maximum likelihood based causal inference: Part I.
    van der Laan MJ
    Int J Biostat; 2010; 6(2):Article 2. PubMed ID: 21969992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginal Structural Models: unbiased estimation for longitudinal studies.
    Moodie EE; Stephens DA
    Int J Public Health; 2011 Feb; 56(1):117-9. PubMed ID: 20931349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.