BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 29693448)

  • 1. Three-dimensional in vitro models answer the right questions in ADPKD cystogenesis.
    Dixon EE; Woodward OM
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F332-F335. PubMed ID: 29693448
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kuraoka S; Tanigawa S; Taguchi A; Hotta A; Nakazato H; Osafune K; Kobayashi A; Nishinakamura R
    J Am Soc Nephrol; 2020 Oct; 31(10):2355-2371. PubMed ID: 32747355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metformin improves relevant disease parameters in an autosomal dominant polycystic kidney disease mouse model.
    Pastor-Soler NM; Li H; Pham J; Rivera D; Ho PY; Mancino V; Saitta B; Hallows KR
    Am J Physiol Renal Physiol; 2022 Jan; 322(1):F27-F41. PubMed ID: 34806449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Hedgehog signaling suppresses proliferation and microcyst formation of human Autosomal Dominant Polycystic Kidney Disease cells.
    Silva LM; Jacobs DT; Allard BA; Fields TA; Sharma M; Wallace DP; Tran PV
    Sci Rep; 2018 Mar; 8(1):4985. PubMed ID: 29563577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2.
    Torra R; Badenas C; San Millán JL; Pérez-Oller L; Estivill X; Darnell A
    Am J Hum Genet; 1999 Aug; 65(2):345-52. PubMed ID: 10417277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autosomal dominant polycystic kidney disease: clues to pathogenesis.
    Harris PC
    Hum Mol Genet; 1999; 8(10):1861-6. PubMed ID: 10469838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice.
    Park EY; Sung YH; Yang MH; Noh JY; Park SY; Lee TY; Yook YJ; Yoo KH; Roh KJ; Kim I; Hwang YH; Oh GT; Seong JK; Ahn C; Lee HW; Park JH
    J Biol Chem; 2009 Mar; 284(11):7214-22. PubMed ID: 19098310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of apoptosis in the development of autosomal dominant polycystic kidney disease (ADPKD).
    Peintner L; Borner C
    Cell Tissue Res; 2017 Jul; 369(1):27-39. PubMed ID: 28560694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies.
    Mochizuki T; Tsuchiya K; Nitta K
    Clin Exp Nephrol; 2013 Jun; 17(3):317-26. PubMed ID: 23192769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on.
    Cornec-Le Gall E; Audrézet MP; Le Meur Y; Chen JM; Férec C
    Hum Mutat; 2014 Dec; 35(12):1393-406. PubMed ID: 25263802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulatory 1α subunit of protein kinase A modulates renal cystogenesis.
    Ye H; Wang X; Constans MM; Sussman CR; Chebib FT; Irazabal MV; Young WF; Harris PC; Kirschner LS; Torres VE
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F677-F686. PubMed ID: 28615245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel ADPKD model using kidney organoids derived from disease-specific human iPSCs.
    Shimizu T; Mae SI; Araoka T; Okita K; Hotta A; Yamagata K; Osafune K
    Biochem Biophys Res Commun; 2020 Sep; 529(4):1186-1194. PubMed ID: 32819584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression.
    Streets AJ; Magayr TA; Huang L; Vergoz L; Rossetti S; Simms RJ; Harris PC; Peters DJ; Ong AC
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F577-F588. PubMed ID: 28077374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polycystin-centric view of cyst formation and disease: the polycystins revisited.
    Ong AC; Harris PC
    Kidney Int; 2015 Oct; 88(4):699-710. PubMed ID: 26200945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis.
    Li A; Fan S; Xu Y; Meng J; Shen X; Mao J; Zhang L; Zhang X; Moeckel G; Wu D; Wu G; Liang C
    J Cell Mol Med; 2017 Aug; 21(8):1619-1635. PubMed ID: 28244683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of Pkd1 in renal stromal cells causes defects in the renal stromal compartment and progressive cystogenesis in the kidney.
    Nie X; Arend LJ
    Lab Invest; 2017 Dec; 97(12):1427-1438. PubMed ID: 28892094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease.
    Bastos AP; Onuchic LF
    Braz J Med Biol Res; 2011 Jul; 44(7):606-17. PubMed ID: 21625823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular advances in autosomal dominant polycystic kidney disease.
    Gallagher AR; Germino GG; Somlo S
    Adv Chronic Kidney Dis; 2010 Mar; 17(2):118-30. PubMed ID: 20219615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatic PKD2 mutations in individual kidney and liver cysts support a "two-hit" model of cystogenesis in type 2 autosomal dominant polycystic kidney disease.
    Pei Y; Watnick T; He N; Wang K; Liang Y; Parfrey P; Germino G; St George-Hyslop P
    J Am Soc Nephrol; 1999 Jul; 10(7):1524-9. PubMed ID: 10405208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the polycystins as mechanosensors of extracellular stiffness.
    Nigro EA; Boletta A
    Am J Physiol Renal Physiol; 2021 May; 320(5):F693-F705. PubMed ID: 33615892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.