These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29693556)

  • 1. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
    Zhu SP; Yue P; Yu ZY; Wang Q
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic emission during fatigue of porous-coated Ti-6Al-4V implant alloy.
    Kohn DH; Ducheyne P; Awerbuch J
    J Biomed Mater Res; 1992 Jan; 26(1):19-38. PubMed ID: 1577833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades.
    Yan Q; Che X; Li S; Wang G; Liu X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.
    Agcaoglu S; Akkus O
    J Biomech Eng; 2013 Aug; 135(8):81005. PubMed ID: 23760184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-Mechanical Fatigue Crack Growth of RR1000.
    Pretty CJ; Whitaker MT; Williams SJ
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.
    Markham J; Cosgrove J; Scire J; Haldeman C; Agoos I
    Rev Sci Instrum; 2014 Dec; 85(12):124902. PubMed ID: 25554314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission.
    Kovač J; Legat A; Zajec B; Kosec T; Govekar E
    Ultrasonics; 2015 Sep; 62():312-22. PubMed ID: 26112425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle filter for fatigue crack growth prediction using SH0 wave on-line monitoring.
    Li Z; Jia J; Wang M; Gu M; Tu S
    Ultrasonics; 2024 May; 142():107355. PubMed ID: 38830325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.
    Schönbauer BM; Stanzl-Tschegg SE
    Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model.
    Broniewicz M; Halicka A; Buda-Ożóg L; Broniewicz F; Nykiel D; Jabłoński Ł
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.
    Patankar R
    Risk Anal; 2003 Oct; 23(5):929-36. PubMed ID: 12969408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Fatigue Damage in Hadfield Steel Using Acoustic Emission and Machine Learning-Based Methods.
    Shi S; Yao D; Wu G; Chen H; Zhang S
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitive methods for health monitoring of compressor blades and fatigue detection.
    Witoś M
    ScientificWorldJournal; 2013; 2013():218460. PubMed ID: 24191135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correcting Hardening Artifacts of Aero-Engine Blades with an Iterative Linear Fitting Technique Framework.
    Gao Y; Fu J; Chen X
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.
    Chen J; Yuan S; Qiu L; Cai J; Yang W
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26950130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of surface fatigue cracks in human cortical bone.
    Kruzic JJ; Scott JA; Nalla RK; Ritchie RO
    J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.