These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29693582)

  • 1. Ultrasound Pulse-Echo Coupled with a Tracking Technique for Simultaneous Measurement of Multiple Bubbles.
    Povolny A; Kikura H; Ihara T
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer.
    Lim HJ; Chang KA; Su CB; Chen CY
    Rev Sci Instrum; 2008 Dec; 79(12):125105. PubMed ID: 19123590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.
    Saito Y; Mishima K; Matsubayashi M
    Appl Radiat Isot; 2004 Oct; 61(4):667-74. PubMed ID: 15246416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system.
    Masala T; Harvel G; Chang JS
    Rev Sci Instrum; 2007 Nov; 78(11):114901. PubMed ID: 18052496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.
    Arbabi A; Mastikhin IV
    J Magn Reson; 2012 Dec; 225():36-45. PubMed ID: 23117260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study on machine-learning-based ultrasound tomography of bubbly two-phase flows.
    Wada Y; Hirose Y; Sibamoto Y
    Ultrasonics; 2024 Jul; 141():107346. PubMed ID: 38820872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic spectrometry of bubbles in an estuarine front: Sound speed dispersion, void fraction, and bubble density.
    Reeder DB; Joseph JE; Rago TA; Bullard JM; Honegger D; Haller MC
    J Acoust Soc Am; 2022 Apr; 151(4):2429. PubMed ID: 35461491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of bubble size, velocity and void fraction in two-phase bubbly flows with time-resolved X-ray imaging.
    Jung SY; Park HW; Lee SJ
    J Synchrotron Radiat; 2014 Mar; 21(Pt 2):424-9. PubMed ID: 24562565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance ultrasonic measurements of microscopic gas bubbles.
    Horton JW; Wells CH
    Aviat Space Environ Med; 1976 Jul; 47(7):777-81. PubMed ID: 971166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic imaging system for the study of decompression-induced gas bubbles.
    Daniels S; Paton WD; Smith EB
    Undersea Biomed Res; 1979 Jun; 6(2):197-207. PubMed ID: 531998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR relaxometry of micro-bubbles in the vertical bubbly flow at a low magnetic field (0.2T).
    Arbabi A; Hall J; Richard P; Wilkins S; Mastikhin IV
    J Magn Reson; 2014 Dec; 249():16-23. PubMed ID: 25462942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.
    Wu C; Wen G; Han L; Wu X
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS; Roy RA; Carey WM
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions).
    Kiuru HJ
    Water Sci Technol; 2001; 43(8):1-7. PubMed ID: 11394261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bubble detection system for propellant filling pipeline.
    Wen W; Zong G; Bi S
    Rev Sci Instrum; 2014 Jun; 85(6):065106. PubMed ID: 24985851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-to-End Bubble Size Distribution Detection Technique in Dense Bubbly Flows Based on You Only Look Once Architecture.
    Chen M; Zhang C; Yang W; Zhang S; Huang W
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations for parallel processing of ultrasound reflection-mode tomography with applications to two-phase flow measurement.
    Wiegand F; Hoyle BS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):652-60. PubMed ID: 18290246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble stimulation efficiency of dinoflagellate bioluminescence.
    Deane GB; Stokes MD; Latz MI
    Luminescence; 2016 Feb; 31(1):270-80. PubMed ID: 26061152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.