These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29693672)

  • 21. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative biomarker assay with microfluidic paper-based analytical devices.
    Li X; Tian J; Shen W
    Anal Bioanal Chem; 2010 Jan; 396(1):495-501. PubMed ID: 19838826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay.
    Preechakasedkit P; Siangproh W; Khongchareonporn N; Ngamrojanavanich N; Chailapakul O
    Biosens Bioelectron; 2018 Apr; 102():27-32. PubMed ID: 29107857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of heavy metal by paper-based microfluidics.
    Lin Y; Gritsenko D; Feng S; Teh YC; Lu X; Xu J
    Biosens Bioelectron; 2016 Sep; 83():256-66. PubMed ID: 27131999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A paper-based point-of-care device for the detection of cysteine using gold nanoparticles from whole blood.
    Kumari M; Kumar N; Kumar S; Gandhi S; Zussman E; Arun RK
    Anal Methods; 2024 May; 16(19):3007-3019. PubMed ID: 38695537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Paper-Based Antibody Detection Devices Using Bioluminescent BRET-Switching Sensor Proteins.
    Tenda K; van Gerven B; Arts R; Hiruta Y; Merkx M; Citterio D
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15369-15373. PubMed ID: 30168634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+.
    Yamada K; Takaki S; Komuro N; Suzuki K; Citterio D
    Analyst; 2014 Apr; 139(7):1637-43. PubMed ID: 24482793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paper-Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation.
    Hiraoka R; Kuwahara K; Wen YC; Yen TH; Hiruta Y; Cheng CM; Citterio D
    ACS Sens; 2020 Apr; 5(4):1110-1118. PubMed ID: 32186370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inkjet-printed paperfluidic immuno-chemical sensing device.
    Abe K; Kotera K; Suzuki K; Citterio D
    Anal Bioanal Chem; 2010 Sep; 398(2):885-93. PubMed ID: 20652543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple geometrical modifications for substantial color intensity and detection limit enhancements in lateral-flow immunochromatographic assays.
    Zadehkafi A; Siavashi M; Asiaei S; Bidgoli MR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Mar; 1110-1111():1-8. PubMed ID: 30772779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a microfluidic-based assay on a novel nitrocellulose platform.
    Arrastia M; Avoundjian A; Ehrlich PS; Eropkin M; Levine L; Gomez FA
    Electrophoresis; 2015 Mar; 36(6):884-8. PubMed ID: 25545783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of Colorimetric Data for Paper-Based Analytical Devices.
    Soda Y; Bakker E
    ACS Sens; 2019 Dec; 4(12):3093-3101. PubMed ID: 31744290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triggerable H
    Li L; Zhang Y; Ge S; Zhang L; Cui K; Zhao P; Yan M; Yu J
    Anal Chem; 2019 Aug; 91(15):10273-10281. PubMed ID: 31287288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced peroxidase-like activity of platinum nanoparticles decorated on nickel- and nitrogen-doped graphene nanotubes: colorimetric detection of glucose.
    Fakhri N; Salehnia F; Mohammad Beigi S; Aghabalazadeh S; Hosseini M; Ganjali MR
    Mikrochim Acta; 2019 May; 186(6):385. PubMed ID: 31139931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device.
    Hongwarittorrn I; Chaichanawongsaroj N; Laiwattanapaisal W
    Talanta; 2017 Dec; 175():135-142. PubMed ID: 28841970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Facile Method to Fabricate an Enclosed Paper-Based Analytical Device via Double-Sided Patterning for Ionic Contaminant Detection.
    Choi J; Lee EH; Kang SM; Jeong HH
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.