These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29693733)

  • 1. Tunable Molecular-Scale Materials for Catalyzing the Low-Overpotential Electrochemical Conversion of CO
    Rosen BA; Hod I
    Adv Mater; 2018 Oct; 30(41):e1706238. PubMed ID: 29693733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO
    Zhang H; Li J; Tan Q; Lu L; Wang Z; Wu G
    Chemistry; 2018 Dec; 24(69):18137-18157. PubMed ID: 30160808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient electrochemical reduction of CO
    Kang X; Zhu Q; Sun X; Hu J; Zhang J; Liu Z; Han B
    Chem Sci; 2016 Jan; 7(1):266-273. PubMed ID: 29861981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of Metal-Organic Framework Based Electrocatalysts: Design and Synthesis for Electrochemical Hydrogen Evolution, Oxygen Evolution, and Carbon Dioxide Reduction Reactions.
    Iniyan S; Ren J; Deshmukh S; Rajeswaran K; Jegan G; Hou H; Suryanarayanan V; Murugadoss V; Kathiresan M; Xu BB; Guo Z
    Chem Rec; 2023 Dec; 23(12):e202300317. PubMed ID: 38054611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal-Organic Frameworks.
    Meng Z; Luo J; Li W; Mirica KA
    J Am Chem Soc; 2020 Dec; 142(52):21656-21669. PubMed ID: 33305565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Frequency Impedance Studies on an Ionic Liquid-Based Miniaturized Electrochemical Sensor toward Continuous Low-Temperature CO
    Sridhar AS; Chen X; Glossmann T; Yang Z; Xu Y; Lai W; Zeng X
    ACS Sens; 2023 Jan; 8(1):197-206. PubMed ID: 36630698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the Roles of Ionic Liquid in CO
    Mohammed SAS; Yahya WZN; Bustam MA; Kibria MG
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembling Metal-Organic Frameworks in Ionic Liquids and Supercritical CO
    Zhang B; Zhang J; Han B
    Chem Asian J; 2016 Oct; 11(19):2610-2619. PubMed ID: 27124497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc Imidazolate Metal-Organic Frameworks (ZIF-8) for Electrochemical Reduction of CO
    Wang Y; Hou P; Wang Z; Kang P
    Chemphyschem; 2017 Nov; 18(22):3142-3147. PubMed ID: 28762639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolyte-Electrocatalyst Interfacial Effects of Polymeric Materials for Tandem CO
    Hamilton ST; Kelly M; Smith WA; Park AA
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42021-42033. PubMed ID: 39087768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO
    Sun X; Lu L; Zhu Q; Wu C; Yang D; Chen C; Han B
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2427-2431. PubMed ID: 29345804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature CO
    Esrafilzadeh D; Zavabeti A; Jalili R; Atkin P; Choi J; Carey BJ; Brkljača R; O'Mullane AP; Dickey MD; Officer DL; MacFarlane DR; Daeneke T; Kalantar-Zadeh K
    Nat Commun; 2019 Feb; 10(1):865. PubMed ID: 30808867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restructuring of Cu
    Tan X; Yu C; Zhao C; Huang H; Yao X; Han X; Guo W; Cui S; Huang H; Qiu J
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9904-9910. PubMed ID: 30773875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction.
    Lu XF; Xia BY; Zang SQ; Lou XWD
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4634-4650. PubMed ID: 31529577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructed Bismuth-Based Metal-Organic Framework Nanofibers for Selective CO
    Ying Y; Khezri B; Kosina J; Pumera M
    ChemSusChem; 2021 Aug; 14(16):3402-3412. PubMed ID: 34227725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO
    Do HH; Truong HB
    Beilstein J Nanotechnol; 2023; 14():904-911. PubMed ID: 37674542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Frameworks for CO
    He H; Perman JA; Zhu G; Ma S
    Small; 2016 Dec; 12(46):6309-6324. PubMed ID: 27762496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Electro-Reduction of CO
    Kang X; Wang B; Hu K; Lyu K; Han X; Spencer BF; Frogley MD; Tuna F; McInnes EJL; Dryfe RAW; Han B; Yang S; Schröder M
    J Am Chem Soc; 2020 Oct; 142(41):17384-17392. PubMed ID: 32997941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.