BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 29694026)

  • 1. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
    Rauch BJ; Porter JJ; Mehl RA; Perona JJ
    Biochemistry; 2016 Jan; 55(3):618-28. PubMed ID: 26694948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
    Yu N; Jora M; Solivio B; Thakur P; Acevedo-Rocha CG; Randau L; de Crécy-Lagard V; Addepalli B; Limbach PA
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening system for orthogonal suppressor tRNAs based on the species-specific toxicity of suppressor tRNAs.
    Tian H; Deng D; Huang J; Yao D; Xu X; Gao X
    Biochimie; 2013 Apr; 95(4):881-8. PubMed ID: 23274575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion.
    Iraha F; Oki K; Kobayashi T; Ohno S; Yokogawa T; Nishikawa K; Yokoyama S; Sakamoto K
    Nucleic Acids Res; 2010 Jun; 38(11):3682-91. PubMed ID: 20159998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.
    Köhrer C; Sullivan EL; RajBhandary UL
    Nucleic Acids Res; 2004; 32(21):6200-11. PubMed ID: 15576346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the genetic code of Escherichia coli.
    Wang L; Brock A; Herberich B; Schultz PG
    Science; 2001 Apr; 292(5516):498-500. PubMed ID: 11313494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.
    Biddle W; Schmitt MA; Fisk JD
    Biochemistry; 2015 Dec; 54(50):7355-64. PubMed ID: 26536053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code.
    Ohno S; Yokogawa T; Fujii I; Asahara H; Inokuchi H; Nishikawa K
    J Biochem; 1998 Dec; 124(6):1065-8. PubMed ID: 9832608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells.
    Sakamoto K; Hayashi A; Sakamoto A; Kiga D; Nakayama H; Soma A; Kobayashi T; Kitabatake M; Takio K; Saito K; Shirouzu M; Hirao I; Yokoyama S
    Nucleic Acids Res; 2002 Nov; 30(21):4692-9. PubMed ID: 12409460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.
    Chatterjee A; Lajoie MJ; Xiao H; Church GM; Schultz PG
    Chembiochem; 2014 Aug; 15(12):1782-6. PubMed ID: 24867343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins.
    Köhrer C; Xie L; Kellerer S; Varshney U; RajBhandary UL
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14310-5. PubMed ID: 11717406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Heterologous tRNA Modifications on the Production of Proteins Containing Noncanonical Amino Acids.
    Crnković A; Vargas-Rodriguez O; Merkuryev A; Söll D
    Bioengineering (Basel); 2018 Feb; 5(1):. PubMed ID: 29393901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo incorporation of an alkyne into proteins in Escherichia coli.
    Deiters A; Schultz PG
    Bioorg Med Chem Lett; 2005 Mar; 15(5):1521-4. PubMed ID: 15713420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs.
    Cervettini D; Tang S; Fried SD; Willis JCW; Funke LFH; Colwell LJ; Chin JW
    Nat Biotechnol; 2020 Aug; 38(8):989-999. PubMed ID: 32284585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment.
    Biddle W; Schmitt MA; Fisk JD
    Nucleic Acids Res; 2016 Dec; 44(21):10042-10050. PubMed ID: 27915288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.