BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 29694026)

  • 21. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetase competition and tRNA context determine the in vivo identify of tRNA discriminator mutants.
    Sherman JM; Rogers K; Rogers MJ; Söll D
    J Mol Biol; 1992 Dec; 228(4):1055-62. PubMed ID: 1474577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational Design of Aptamer-Tagged tRNAs.
    Mukai T
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1703-14. PubMed ID: 17698638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering posttranslational proofreading to discriminate nonstandard amino acids.
    Kunjapur AM; Stork DA; Kuru E; Vargas-Rodriguez O; Landon M; Söll D; Church GM
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):619-624. PubMed ID: 29301968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reassigning Sense Codon AGA to Encode Noncanonical Amino Acids in Escherichia coli.
    Wang Y; Tsao ML
    Chembiochem; 2016 Dec; 17(23):2234-2239. PubMed ID: 27647777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partially modified tRNAs for the study of tRNA maturation and function.
    Schultz SK; Kothe U
    Methods Enzymol; 2021; 658():225-250. PubMed ID: 34517948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Orthogonal Tyrosyl-tRNA Synthetase/tRNA Pair from a Thermophilic Bacterium for an Expanded Eukaryotic Genetic Code.
    Qin X; Tang H; Cao W; Dai Z; Hu L; Huang Y; Liu T
    Biochemistry; 2020 Jan; 59(1):90-99. PubMed ID: 31703481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Xiao H; Schultz PG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14841-6. PubMed ID: 22927411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplex suppression of four quadruplet codons via tRNA directed evolution.
    DeBenedictis EA; Carver GD; Chung CZ; Söll D; Badran AH
    Nat Commun; 2021 Sep; 12(1):5706. PubMed ID: 34588441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
    Lee CP; RajBhandary UL
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed Evolution Pipeline for the Improvement of Orthogonal Translation Machinery for Genetic Code Expansion at Sense Codons.
    Biddle W; Schwark DG; Schmitt MA; Fisk JD
    Front Chem; 2022; 10():815788. PubMed ID: 35252113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNA
    Englert M; Vargas-Rodriguez O; Reynolds NM; Wang YS; Söll D; Umehara T
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3009-3015. PubMed ID: 28288813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria.
    Kowal AK; Kohrer C; RajBhandary UL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2268-73. PubMed ID: 11226228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli.
    Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL
    RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Base pairing within the psi32,psi39-modified anticodon arm of Escherichia coli tRNA(Phe).
    Tworowska I; Nikonowicz EP
    J Am Chem Soc; 2006 Dec; 128(49):15570-1. PubMed ID: 17147349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells.
    Jewel D; Kelemen RE; Huang RL; Zhu Z; Sundaresh B; Cao X; Malley K; Huang Z; Pasha M; Anthony J; van Opijnen T; Chatterjee A
    Nat Methods; 2023 Jan; 20(1):95-103. PubMed ID: 36550276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.