These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29694051)

  • 1. Protein Aggregation and Performance Optimization Based on Microconformational Changes of Aromatic Hydrophobic Regions.
    Wen L; Lyu M; Xiao H; Lan H; Zuo Z; Yin Z
    Mol Pharm; 2018 Jun; 15(6):2257-2267. PubMed ID: 29694051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral Effects of Excipients on Protein Stability: Preferential Interaction Type of Excipient and Surface Aromatic Hydrophobicity of Protein.
    Wen L; Zheng X; Wang X; Lan H; Yin Z
    Pharm Res; 2017 Jul; 34(7):1378-1390. PubMed ID: 28401430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.
    Shah D; Shaikh AR
    J Biomol Struct Dyn; 2016; 34(1):104-14. PubMed ID: 25730443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions.
    Li J; Garg M; Shah D; Rajagopalan R
    J Chem Phys; 2010 Aug; 133(5):054902. PubMed ID: 20707549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects.
    Arakawa T; Ejima D; Tsumoto K; Obeyama N; Tanaka Y; Kita Y; Timasheff SN
    Biophys Chem; 2007 Apr; 127(1-2):1-8. PubMed ID: 17257734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of guanidine and arginine on protein-ligand interactions in multimodal cation-exchange chromatography.
    Parimal S; Garde S; Cramer SM
    Biotechnol Prog; 2017 Mar; 33(2):435-447. PubMed ID: 27997085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Aggregation, Coaggregation, and Liquid Droplet of Proteins Using Small Additives.
    Iwashita K; Mimura M; Shiraki K
    Curr Pharm Biotechnol; 2018; 19(12):946-955. PubMed ID: 30514188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of reversible protein aggregate and crystal structure.
    Patro SY; Przybycien TM
    Biophys J; 1996 Jun; 70(6):2888-902. PubMed ID: 8744327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is arginine a protein-denaturant?
    Ishibashi M; Tsumoto K; Tokunaga M; Ejima D; Kita Y; Arakawa T
    Protein Expr Purif; 2005 Jul; 42(1):1-6. PubMed ID: 15893471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: implication of suppression of protein aggregation by arginine.
    Ito L; Shiraki K; Matsuura T; Okumura M; Hasegawa K; Baba S; Yamaguchi H; Kumasaka T
    Protein Eng Des Sel; 2011 Mar; 24(3):269-74. PubMed ID: 21084280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AggScore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches.
    Sankar K; Krystek SR; Carl SM; Day T; Maier JKX
    Proteins; 2018 Nov; 86(11):1147-1156. PubMed ID: 30168197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of arginine in mediating protein-carbon nanotube interactions.
    Wu E; Coppens MO; Garde S
    Langmuir; 2015 Feb; 31(5):1683-92. PubMed ID: 25575129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation.
    Shah D; Li J; Shaikh AR; Rajagopalan R
    Biotechnol Prog; 2012; 28(1):223-31. PubMed ID: 21948347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the effects of solution additives on heat- and refolding-induced aggregation.
    Hamada H; Takahashi R; Noguchi T; Shiraki K
    Biotechnol Prog; 2008; 24(2):436-43. PubMed ID: 18386919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing structure-nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study.
    Teklebrhan RB; Ge L; Bhattacharjee S; Xu Z; Sjöblom J
    J Phys Chem B; 2012 May; 116(20):5907-18. PubMed ID: 22512276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the protein salting-in mechanism of arginine, magnesium chloride and ethylene glycol: Solvent interaction with aromatic solutes.
    Ura T; Arakawa T; Shiraki K
    Int J Biol Macromol; 2021 Oct; 188():670-677. PubMed ID: 34400229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces.
    Woo J; Parimal S; Brown MR; Heden R; Cramer SM
    J Chromatogr A; 2015 Sep; 1412():33-42. PubMed ID: 26292626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscosity Control of Protein Solution by Small Solutes: A Review.
    Hong T; Iwashita K; Shiraki K
    Curr Protein Pept Sci; 2018; 19(8):746-758. PubMed ID: 29237380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of the arginine-assisted solubilization of caffeic acid: intervention in the interaction.
    Hirano A; Kameda T; Shinozaki D; Arakawa T; Shiraki K
    J Phys Chem B; 2013 Jun; 117(25):7518-27. PubMed ID: 23721175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.