These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 29694125)

  • 1. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties.
    Xie T; Grossman JC
    Phys Rev Lett; 2018 Apr; 120(14):145301. PubMed ID: 29694125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical visualization of materials space with graph convolutional neural networks.
    Xie T; Grossman JC
    J Chem Phys; 2018 Nov; 149(17):174111. PubMed ID: 30409009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of crystal properties based on attention mechanism and crystal graph convolutional neural network.
    Wang B; Fan Q; Yue Y
    J Phys Condens Matter; 2022 Mar; 34(19):. PubMed ID: 35189607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph convolutional neural networks with global attention for improved materials property prediction.
    Louis SY; Zhao Y; Nasiri A; Wang X; Song Y; Liu F; Hu J
    Phys Chem Chem Phys; 2020 Aug; 22(32):18141-18148. PubMed ID: 32766627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction.
    Na GS; Jang S; Lee YL; Chang H
    J Phys Chem A; 2020 Dec; 124(50):10616-10623. PubMed ID: 33280389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction.
    Coley CW; Barzilay R; Green WH; Jaakkola TS; Jensen KF
    J Chem Inf Model; 2017 Aug; 57(8):1757-1772. PubMed ID: 28696688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2019 Dec; 59(12):5026-5033. PubMed ID: 31769668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewc-GNN Algorithm for the Property Prediction of Large-Scale Crystals.
    Bai M; Diao H; Mu X; Wang Z; Cao J; Li Y
    J Phys Chem A; 2024 Aug; 128(30):6183-6189. PubMed ID: 39037404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph attention neural networks for mapping materials and molecules beyond short-range interatomic correlations.
    Liu Y; Liu X; Cao B
    J Phys Condens Matter; 2024 Feb; 36(21):. PubMed ID: 38306704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning material properties from the periodic table using convolutional neural networks.
    Zheng X; Zheng P; Zhang RZ
    Chem Sci; 2018 Nov; 9(44):8426-8432. PubMed ID: 30542592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representations in neural network based empirical potentials.
    Cubuk ED; Malone BD; Onat B; Waterland A; Kaxiras E
    J Chem Phys; 2017 Jul; 147(2):024104. PubMed ID: 28711053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks.
    Palizhati A; Zhong W; Tran K; Back S; Ulissi ZW
    J Chem Inf Model; 2019 Nov; 59(11):4742-4749. PubMed ID: 31644279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Configurations of 3d Transition-Metal Compounds Using Local Structure and Neural Networks.
    Zhang W; Berthebaud D; Halet JF; Mori T
    J Phys Chem A; 2022 Oct; 126(40):7373-7381. PubMed ID: 36178210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material symmetry recognition and property prediction accomplished by crystal capsule representation.
    Liang C; Rouzhahong Y; Ye C; Li C; Wang B; Li H
    Nat Commun; 2023 Aug; 14(1):5198. PubMed ID: 37626032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-guided representation for accurate graph-based molecular machine learning.
    Na GS; Chang H; Kim HW
    Phys Chem Chem Phys; 2020 Sep; 22(33):18526-18535. PubMed ID: 32780040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal graph deep learning interatomic potential for the periodic table.
    Chen C; Ong SP
    Nat Comput Sci; 2022 Nov; 2(11):718-728. PubMed ID: 38177366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.