These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29694155)

  • 1. Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description.
    Arora S; Fromental JM; Mora S; Phou T; Ramos L; Ligoure C
    Phys Rev Lett; 2018 Apr; 120(14):148003. PubMed ID: 29694155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity and elastocapillarity effects in the impact of drops on a repellent surface.
    Charles CA; Louhichi A; Ramos L; Ligoure C
    Soft Matter; 2021 Jun; 17(23):5829-5837. PubMed ID: 34037061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary deformations of bendable films.
    Schroll RD; Adda-Bedia M; Cerda E; Huang J; Menon N; Russell TP; Toga KB; Vella D; Davidovitch B
    Phys Rev Lett; 2013 Jul; 111(1):014301. PubMed ID: 23863002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.
    Lee JB; Derome D; Dolatabadi A; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1279-88. PubMed ID: 26745364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ejecta, Corolla, and Splashes from Drop Impacts on Viscous Fluids.
    Marcotte F; Michon GJ; Séon T; Josserand C
    Phys Rev Lett; 2019 Jan; 122(1):014501. PubMed ID: 31012665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact dynamics of oxidized liquid metal drops.
    Xu Q; Brown E; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043012. PubMed ID: 23679518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Leidenfrost Levitation of Soft Elastic Solids.
    Binysh J; Chakraborty I; Chubynsky MV; Melian VLD; Waitukaitis SR; Sprittles JE; Souslov A
    Phys Rev Lett; 2023 Oct; 131(16):168201. PubMed ID: 37925690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple Leidenfrost Effect: Preventing Coalescence of Drops on a Hot Plate.
    Pacheco-Vázquez F; Ledesma-Alonso R; Palacio-Rangel JL; Moreau F
    Phys Rev Lett; 2021 Nov; 127(20):204501. PubMed ID: 34860033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spreading Time of Impacting Nanodroplets.
    Wang YB; Wang YF; Yang YR; Wang XD; Chen M
    J Phys Chem B; 2021 Jun; 125(21):5630-5635. PubMed ID: 34008980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation with an interfacial liquid layer: Robust and efficient liquid-liquid wrapping.
    Misra S; Trinavee K; Gunda NSK; Mitra SK
    J Colloid Interface Sci; 2020 Jan; 558():334-344. PubMed ID: 31634708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perspective on the interfacial properties of nanoscopic liquid drops.
    Malijevský A; Jackson G
    J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving wetting ridges on ultrasoft gels.
    Jeon H; Chao Y; Karpitschka S
    Phys Rev E; 2023 Aug; 108(2-1):024611. PubMed ID: 37723757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk rheology on capillary and Rayleigh waves.
    Monroy F
    Adv Colloid Interface Sci; 2017 Sep; 247():4-22. PubMed ID: 28735885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic control of Leidenfrost drops.
    Piroird K; Clanet C; Quéré D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056311. PubMed ID: 23004866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leidenfrost Self-Rewetting Drops.
    Ouenzerfi S; Harmand S; Schiffler J
    J Phys Chem B; 2018 May; 122(18):4922-4930. PubMed ID: 29672056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.
    Chen S; Bertola V
    Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath.
    Gauthier A; Diddens C; Proville R; Lohse D; van der Meer D
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1174-1179. PubMed ID: 30617076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.
    Adda-Bedia M; Kumar S; Lechenault F; Moulinet S; Schillaci M; Vella D
    Langmuir; 2016 May; 32(17):4179-88. PubMed ID: 27054550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.
    Danov KD; Stanimirova RD; Kralchevsky PA; Marinova KG; Stoyanov SD; Blijdenstein TBJ; Cox AR; Pelan EG
    Adv Colloid Interface Sci; 2016 Jul; 233():223-239. PubMed ID: 26143156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.