BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29694388)

  • 1. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.
    Wang W; Teng F; Lin Y; Ji D; Xu Y; Chen C; Xie C
    PLoS One; 2018; 13(4):e0195842. PubMed ID: 29694388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions.
    Wang W; Xu Y; Chen T; Xing L; Xu K; Xu Y; Ji D; Chen C; Xie C
    Sci Total Environ; 2019 Apr; 662():168-179. PubMed ID: 30690352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses.
    Sun P; Mao Y; Li G; Cao M; Kong F; Wang L; Bi G
    BMC Genomics; 2015 Jun; 16(1):463. PubMed ID: 26081586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation.
    Shi J; Wang W; Lin Y; Xu K; Xu Y; Ji D; Chen C; Xie C
    BMC Plant Biol; 2019 Nov; 19(1):475. PubMed ID: 31694541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress.
    Shi J; Chen Y; Xu Y; Ji D; Chen C; Xie C
    Sci Rep; 2017 Mar; 7():44734. PubMed ID: 28303955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology.
    Wang L; Mao Y; Kong F; Cao M; Sun P
    BMC Genomics; 2015 Nov; 16():1012. PubMed ID: 26611675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers.
    Xie C; Li B; Xu Y; Ji D; Chen C
    BMC Genomics; 2013 Feb; 14():107. PubMed ID: 23414227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of elevated atmospheric CO
    Ma H; Zou D; Wen J; Ji Z; Gong J; Liu C
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33361-33369. PubMed ID: 30259325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses.
    Sun P; Tang X; Bi G; Xu K; Kong F; Mao Y
    Mar Genomics; 2019 Feb; 43():43-49. PubMed ID: 30279127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress.
    Yu X; Mo Z; Tang X; Gao T; Mao Y
    BMC Plant Biol; 2021 Sep; 21(1):435. PubMed ID: 34560838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).
    Wu H
    Biomed Res Int; 2016; 2016():7383918. PubMed ID: 27642603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta).
    Luo Q; Zhu Z; Zhu Z; Yang R; Qian F; Chen H; Yan X
    PLoS One; 2014; 9(4):e94354. PubMed ID: 24709783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Mechanisms Underlying the Low Irradiance-Tolerance of the Economically Important Seaweed Species
    Ji D; Zhang Y; Zhang B; Xu Y; Xu K; Chen C; Xie C
    Life (Basel); 2023 Feb; 13(2):. PubMed ID: 36836838
    [No Abstract]   [Full Text] [Related]  

  • 14. A chromosome-level genome assembly of Pyropia haitanensis (Bangiales, Rhodophyta).
    Cao M; Xu K; Yu X; Bi G; Liu Y; Kong F; Sun P; Tang X; Du G; Ge Y; Wang D; Mao Y
    Mol Ecol Resour; 2020 Jan; 20(1):216-227. PubMed ID: 31600851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data.
    Zhang B; Xie X; Liu X; He L; Sun Y; Wang G
    BMC Plant Biol; 2020 Sep; 20(1):424. PubMed ID: 32933475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage.
    Liao JL; Zhou HW; Peng Q; Zhong PA; Zhang HY; He C; Huang YJ
    BMC Genomics; 2015 Jan; 16(1):18. PubMed ID: 25928563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unique life cycle transition in the red seaweed
    Mikami K; Li C; Irie R; Hama Y
    Commun Biol; 2019; 2():299. PubMed ID: 31396579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PtDRG1, a Desiccation Response Gene from Pyropia tenera (Rhodophyta), Exhibits Chaperone Function and Enhances Abiotic Stress Tolerance.
    Na Y; Lee HN; Wi J; Jeong WJ; Choi DW
    Mar Biotechnol (NY); 2018 Oct; 20(5):584-593. PubMed ID: 29728789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Transcriptome Analysis During Anthesis Reveals New Insights into the Molecular Basis of Heat Stress Responses in Tolerant and Sensitive Rice Varieties.
    González-Schain N; Dreni L; Lawas LM; Galbiati M; Colombo L; Heuer S; Jagadish KS; Kater MM
    Plant Cell Physiol; 2016 Jan; 57(1):57-68. PubMed ID: 26561535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.