These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29694679)

  • 1. Sequence-Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting.
    Zhao Y
    Chemistry; 2018 Sep; 24(53):14001-14009. PubMed ID: 29694679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-Binding Nanoparticle Materials with Tailored Recognition sites for Basic Peptides.
    Fa S; Zhao Y
    Chem Mater; 2017 Nov; 29(21):9284-9291. PubMed ID: 29725162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water.
    Zhang S; Zhao Y
    J Mol Recognit; 2019 Apr; 32(4):e2769. PubMed ID: 30419606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Ligands in the Imprinting and Binding of Molecularly Imprinted Cross-Linked Micelles.
    Arifuzzaman MD; Zhao W; Zhao Y
    Supramol Chem; 2018; 30(11):929-939. PubMed ID: 31223222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic Molecularly Imprinted Cross-Linked Micelles for Alkaloid Recognition in Water.
    Duan L; Zhao Y
    J Org Chem; 2019 Nov; 84(21):13457-13464. PubMed ID: 31545044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-soluble molecularly imprinted nanoparticles (MINPs) with tailored, functionalized, modifiable binding pockets.
    Awino JK; Zhao Y
    Chemistry; 2015 Jan; 21(2):655-61. PubMed ID: 25382073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Soluble Molecularly Imprinted Nanoparticles (MINPs) with Tailored, Functionalized, Modifiable Binding Pockets.
    Awino JK; Zhao Y
    Chemistry; 2014 Nov; ():. PubMed ID: 25376391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-Soluble Molecularly Imprinted Nanoparticle Receptors with Hydrogen-Bond-Assisted Hydrophobic Binding.
    Arifuzzaman MD; Zhao Y
    J Org Chem; 2016 Sep; 81(17):7518-26. PubMed ID: 27462993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Method for Peptide Recognition in Water through Bioinspired Complementarity.
    Fa S; Zhao Y
    Chem Mater; 2019 Jul; 31(13):4889-4896. PubMed ID: 32921904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Binding of Complex Glycans and Glycoproteins in Water by Molecularly Imprinted Nanoparticles.
    Zangiabadi M; Zhao Y
    Nano Lett; 2020 Jul; 20(7):5106-5110. PubMed ID: 32501718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides.
    Fa S; Zhao Y
    Chemistry; 2018 Jan; 24(1):150-158. PubMed ID: 29096045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Selective Binding of Oligopeptides in Water through Hydrophobic Coding.
    Awino JK; Gunasekara RW; Zhao Y
    J Am Chem Soc; 2017 Feb; 139(6):2188-2191. PubMed ID: 28128940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles that Distinguish Chemical and Supramolecular Contexts of Lysine for Single-Site Functionalization of Protein.
    Ghosh A; Zhao Y
    Nano Lett; 2024 Jul; 24(28):8763-8769. PubMed ID: 38976835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-mimetic, molecularly imprinted nanoparticles for selective binding of bile salt derivatives in water.
    Awino JK; Zhao Y
    J Am Chem Soc; 2013 Aug; 135(34):12552-5. PubMed ID: 23931721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nano-confinement and conformational mobility on molecular imprinting of cross-linked micelles.
    Chen K; Zhao Y
    Org Biomol Chem; 2019 Sep; 17(37):8611-8617. PubMed ID: 31528942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.
    Raghupathi KR; Guo J; Munkhbat O; Rangadurai P; Thayumanavan S
    Acc Chem Res; 2014 Jul; 47(7):2200-11. PubMed ID: 24937682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse Properties of Guanidiniocarbonyl Pyrrole-Based Molecules: Artificial Analogues of Arginine.
    Hatai J; Schmuck C
    Acc Chem Res; 2019 Jun; 52(6):1709-1720. PubMed ID: 31150198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants.
    Yang S; Khaledi MG
    Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.