These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29695158)

  • 21. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward a predictive understanding of slow methyl group dynamics in proteins.
    Long D; Li DW; Walter KF; Griesinger C; Brüschweiler R
    Biophys J; 2011 Aug; 101(4):910-5. PubMed ID: 21843482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relaxation rates of degenerate 1H transitions in methyl groups of proteins as reporters of side-chain dynamics.
    Tugarinov V; Kay LE
    J Am Chem Soc; 2006 Jun; 128(22):7299-308. PubMed ID: 16734484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced spectral density mapping through combined multiple-field deuterium
    Hsu A; O'Brien PA; Bhattacharya S; Rance M; Palmer AG
    Methods; 2018 Apr; 138-139():76-84. PubMed ID: 29288801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Propagation of experimental uncertainties using the Lipari-Szabo model-free analysis of protein dynamics.
    Jin D; Andrec M; Montelione GT; Levy RM
    J Biomol NMR; 1998 Nov; 12(4):471-92. PubMed ID: 9862126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing Side-Chain Dynamics in Proteins by NMR Relaxation of Isolated
    Tugarinov V; Ceccon A; Clore GM
    J Phys Chem B; 2021 Apr; 125(13):3343-3352. PubMed ID: 33769060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased rigidity of eglin c at acidic pH: evidence from NMR spin relaxation and MD simulations.
    Hu H; Clarkson MW; Hermans J; Lee AL
    Biochemistry; 2003 Dec; 42(47):13856-68. PubMed ID: 14636053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational dynamics of HIV-1 protease: a comparative molecular dynamics simulation study with multiple amber force fields.
    Meher BR; Kumar MV; Sharma S; Bandyopadhyay P
    J Bioinform Comput Biol; 2012 Dec; 10(6):1250018. PubMed ID: 22845837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of protein side-chain conformational free energy surfaces from NMR-derived methyl axis order parameters.
    Krishnan M; Smith JC
    J Phys Chem B; 2012 Apr; 116(14):4124-33. PubMed ID: 22401582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining Molecular and Spin Dynamics Simulations with Solid-State NMR: A Case Study of Amphiphilic Lysine-Leucine Repeat Peptide Aggregates.
    Emani PS; Yimer YY; Davidowski SK; Gebhart RN; Ferreira HE; Kuprov I; Pfaendtner J; Drobny GP
    J Phys Chem B; 2019 Dec; 123(51):10915-10929. PubMed ID: 31769684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I
    J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
    Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C
    J Chem Theory Comput; 2015 Aug; 11(8):3696-713. PubMed ID: 26574453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
    Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; Lee T; Caldwell J; Wang J; Kollman P
    J Comput Chem; 2003 Dec; 24(16):1999-2012. PubMed ID: 14531054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1H,13C-1H,1H dipolar cross-correlated spin relaxation in methyl groups.
    Tugarinov V; Kay LE
    J Biomol NMR; 2004 Jul; 29(3):369-76. PubMed ID: 15213435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.