These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 29695616)
1. Abundance of Phase 1 and 2 Drug-Metabolizing Enzymes in Alcoholic and Hepatitis C Cirrhotic Livers: A Quantitative Targeted Proteomics Study. Prasad B; Bhatt DK; Johnson K; Chapa R; Chu X; Salphati L; Xiao G; Lee C; Hop CECA; Mathias A; Lai Y; Liao M; Humphreys WG; Kumer SC; Unadkat JD Drug Metab Dispos; 2018 Jul; 46(7):943-952. PubMed ID: 29695616 [TBL] [Abstract][Full Text] [Related]
2. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. Wang L; Collins C; Kelly EJ; Chu X; Ray AS; Salphati L; Xiao G; Lee C; Lai Y; Liao M; Mathias A; Evers R; Humphreys W; Hop CE; Kumer SC; Unadkat JD Drug Metab Dispos; 2016 Nov; 44(11):1752-1758. PubMed ID: 27543206 [TBL] [Abstract][Full Text] [Related]
3. Physiologically Based Pharmacokinetic Modeling to Predict the Impact of Liver Cirrhosis on Glucuronidation via UGT1A4 and UGT2B7/2B4-A Case Study with Midazolam. Ozbey AC; Keemink J; Wagner B; Pugliano A; Krähenbühl S; Annaert P; Fowler S; Parrott N; Umehara K Drug Metab Dispos; 2024 Jun; 52(7):614-625. PubMed ID: 38653501 [TBL] [Abstract][Full Text] [Related]
4. Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. Drozdzik M; Lapczuk-Romanska J; Wenzel C; Skalski L; Szeląg-Pieniek S; Post M; Parus A; Syczewska M; Kurzawski M; Oswald S Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901973 [TBL] [Abstract][Full Text] [Related]
5. Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics. Singh DK; Ahire D; Davydov DR; Prasad B Drug Metab Dispos; 2024 Oct; 52(11):1152-1160. PubMed ID: 38641346 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Differential Tissue Abundance of Major Non-CYP Enzymes in Human. Basit A; Neradugomma NK; Wolford C; Fan PW; Murray B; Takahashi RH; Khojasteh SC; Smith BJ; Heyward S; Totah RA; Kelly EJ; Prasad B Mol Pharm; 2020 Nov; 17(11):4114-4124. PubMed ID: 32955894 [TBL] [Abstract][Full Text] [Related]
7. Non-uniformity of Changes in Drug-Metabolizing Enzymes and Transporters in Liver Cirrhosis: Implications for Drug Dosage Adjustment. El-Khateeb E; Achour B; Al-Majdoub ZM; Barber J; Rostami-Hodjegan A Mol Pharm; 2021 Sep; 18(9):3563-3577. PubMed ID: 34428046 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Tissue Abundance of Non-Cytochrome P450 Drug-Metabolizing Enzymes by Quantitative Proteomics between Humans and Laboratory Animal Species. Basit A; Fan PW; Khojasteh SC; Murray BP; Smith BJ; Heyward S; Prasad B Drug Metab Dispos; 2022 Mar; 50(3):197-203. PubMed ID: 34969659 [TBL] [Abstract][Full Text] [Related]
9. Biliary intraepithelial neoplasia in patients without chronic biliary disease: analysis of liver explants with alcoholic cirrhosis, hepatitis C infection, and noncirrhotic liver diseases. Wu TT; Levy M; Correa AM; Rosen CB; Abraham SC Cancer; 2009 Oct; 115(19):4564-75. PubMed ID: 19670455 [TBL] [Abstract][Full Text] [Related]
10. Deficient Stat3 DNA-binding is associated with high Pias3 expression and a positive anti-apoptotic balance in human end-stage alcoholic and hepatitis C cirrhosis. Stärkel P; De Saeger C; Leclercq I; Strain A; Horsmans Y J Hepatol; 2005 Oct; 43(4):687-95. PubMed ID: 16098628 [TBL] [Abstract][Full Text] [Related]
12. Genetic polymorphisms of ADH1B, ADH1C and ALDH2 in Turkish alcoholics: lack of association with alcoholism and alcoholic cirrhosis. Vatansever S; Tekin F; Salman E; Altintoprak E; Coskunol H; Akarca US Bosn J Basic Med Sci; 2015 May; 15(2):37-41. PubMed ID: 26042511 [TBL] [Abstract][Full Text] [Related]
13. Liver regeneration is suppressed in alcoholic cirrhosis: correlation with decreased STAT3 activation. Horiguchi N; Ishac EJ; Gao B Alcohol; 2007 Jun; 41(4):271-80. PubMed ID: 17630087 [TBL] [Abstract][Full Text] [Related]
14. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. Yokoyama A; Mizukami T; Matsui T; Yokoyama T; Kimura M; Matsushita S; Higuchi S; Maruyama K Alcohol Clin Exp Res; 2013 Aug; 37(8):1391-401. PubMed ID: 23550892 [TBL] [Abstract][Full Text] [Related]
15. Gene Expression and Protein Abundance of Hepatic Drug Metabolizing Enzymes in Liver Pathology. Drozdzik M; Lapczuk-Romanska J; Wenzel C; Szelag-Pieniek S; Post M; Skalski Ł; Kurzawski M; Oswald S Pharmaceutics; 2021 Aug; 13(9):. PubMed ID: 34575411 [TBL] [Abstract][Full Text] [Related]
16. Ontogeny of Small Intestinal Drug Transporters and Metabolizing Enzymes Based on Targeted Quantitative Proteomics. Kiss M; Mbasu R; Nicolaï J; Barnouin K; Kotian A; Mooij MG; Kist N; Wijnen RMH; Ungell AL; Cutler P; Russel FGM; de Wildt SN Drug Metab Dispos; 2021 Dec; 49(12):1038-1046. PubMed ID: 34548392 [TBL] [Abstract][Full Text] [Related]
17. Polymorphism in alcohol-metabolizing enzymes, glutathione S-transferases and apolipoprotein E and susceptibility to alcohol-induced cirrhosis and chronic pancreatitis. Frenzer A; Butler WJ; Norton ID; Wilson JS; Apte MV; Pirola RC; Ryan P; Roberts-Thomson IC J Gastroenterol Hepatol; 2002 Feb; 17(2):177-82. PubMed ID: 11966948 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms involved in the interaction effects of alcohol and hepatitis C virus in liver cirrhosis. Mas VR; Fassnacht R; Archer KJ; Maluf D Mol Med; 2010; 16(7-8):287-97. PubMed ID: 20386865 [TBL] [Abstract][Full Text] [Related]
20. Proteomic Quantification of Changes in Abundance of Drug-Metabolizing Enzymes and Drug Transporters in Human Liver Cirrhosis: Different Methods, Similar Outcomes. El-Khateeb E; Al-Majdoub ZM; Rostami-Hodjegan A; Barber J; Achour B Drug Metab Dispos; 2021 Aug; 49(8):610-618. PubMed ID: 34045218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]